版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二项分布的Piossion逼近随机过程一.二项分布
二项分布即重复n次独立的伯努利实验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布就是伯努利分布。
在概率论和统计学中,二项分布是n个独立的是/非二项分布与生活息息相关试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当n=1时,二项分布就是伯努利分布,二项分布是显著性差异的二项试验的基础。二.泊松分布
泊松分布是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松(Siméon-DenisPoisson)在1838年时发表。概率论中常用的一种离散型概率分布。若随机变量X只取非负整数值,取k值的概率为(k=0,1,2,…),则随机变量X的分布称为泊松分布,记作P(λ)。这个分布是S.-D.泊松研究二项分布的渐近公式是时提出来的。泊松分布P(λ)中只有一个参数λ,它既是泊松分布的均值,也是泊松分布的方差。在实际事例中,当一个随机事件,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布。因此泊松分布在管理科学,运筹学以及自然科学的某些问题中都占有重要的地位。三.泊松分布与二项分布当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧10,p≦0.1时,就可以用泊松公式近似得计算。四.二项分布的Piossion逼近在n很大,p很小,而λ=np大小适中时,有b(k;n,p)=···········用Piosson逼近给出b(k;100,0.01),b(k;100,0.01)(k=0,1,2,…,2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业定制办公台式机采购合同
- 承包合同转让协议的变更
- 白酒二批经销商合同协议范本
- 居间及法律服务合同纠纷
- 街边店铺转让合同模板
- 环保废钢采购协议
- 项目设计招标文件模板设计心得分享
- 网站故障排查服务合同
- 电梯设备运营服务合同
- 质物借款责任
- 高级微观经济学
- 听力障碍随班就读学生个别辅导记录
- 乌鸦喝水(绘本)
- 沟拐加油站试生产方案
- 山东省烟台市2023-2024学年三上数学期末含答案
- 幼儿园毕业纪念册PPT模板
- 主体幸福感模型的理论建构
- 观察记录那些事儿-走进经典阅读《聚焦式观察:儿童观察、评价与课程设计》优质课件PPT
- 浙教版小学人·自然·社会四年级第17课 走近王安石 课件
- QC小组(提高维修效率)课件
- 火成岩岩石化学图解与判别
评论
0/150
提交评论