版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年四川省绵阳市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.若sinα与cosα同号,则α属于()A.第一象限角B.第二象限角C.第一、二象限角D.第一、三象限角
2.在正方体ABCD-A1B1C1D1中,二面角D1-AB-D的大小是()A.30°B.60°C.45°D.90°
3.若等差数列{an}中,a1=2,a5=6,则公差d等于()A.3B.2C.1D.0
4.椭圆9x2+16y2=144短轴长等于()A.3B.4C.6D.8
5.设则f(f(-2))=()A.-1B.1/4C.1/2D.3/2
6.用列举法表示小于2的自然数正确的是A.{1,0}B.{1,2}C.{1}D.{-1,1,0}
7.不等式-2x22+x+3<0的解集是()A.{x|x<-1}B.{x|x>3/2}C.{x|-1<x<3/2}D.{x|x<-1或x>3/2}
8.设集合A={1,2,4},B={2,3,4},则A∪B=()A.{1,2}B.{2,4}C.{1,2,3,4}D.{1,2,3}
9.已知集合M={1,2,3,4},以={-2,2},下列结论成立的是()A.N包含于MB.M∪N=MC.M∩N=ND.M∩N={2}
10.函数y=1/2x2-lnx的单调递减区间为().A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)
11.A.3B.4C.5D.6
12.直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是()A.-2或12B.2或-12C.-2或-12D.2或12
13.函数y=log2x的图象大致是()A.
B.
C.
D.
14.已知互为反函数,则k和b的值分别是()A.2,
B.2,
C.-2,
D.-2,
15.A.B.C.D.
16.下列命题中,假命题的是()A.a=0且b=0是AB=0的充分条件
B.a=0或b=0是AB=0的充分条件
C.a=0且b=0是AB=0的必要条件
D.a=0或b=0是AB=0的必要条件
17.在△ABC中,“x2
=1”是“x=1”的()
A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件
18.从1,2,3,4,5,6这6个数中任取两个数,则取出的两数都是偶数的概率是()A.1/3B.1/4C.1/5D.1/6
19.的展开式中,常数项是()A.6B.-6C.4D.-4
20.圆(x+1)2+y2=2的圆心到直线y=x+3的距离为A.1
B.2
C.
D.2
二、填空题(10题)21.以点(1,2)为圆心,2为半径的圆的方程为_______.
22.若f(x)=2x3+1,则f(1)=
。
23.cos45°cos15°+sin45°sin15°=
。
24.五位同学站成一排,其中甲既不站在排头也不站在排尾的排法有_____种.
25.已知直线l1:ax-y+2a+1=0和直线l2:2x-(a-l)y+2=0(a∈R)则l1⊥l2的充要条件是a=______.
26.若直线6x-4x+7=0与直线ax+2y-6=0平行,则a的值等于_____.
27.某田径队有男运动员30人,女运动员10人.用分层抽样的方法从中抽出一个容量为20的样本,则抽出的女运动员有______人.
28.
29.
30.若,则_____.
三、计算题(5题)31.解不等式4<|1-3x|<7
32.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
33.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
34.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
35.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
四、简答题(10题)36.化简
37.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积
38.证明:函数是奇函数
39.化简a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)
40.在拋物线y2=12x上有一弦(两端点在拋物线上的线段)被点M(1,2)平分.(1)求这条弦所在的直线方程;(2)求这条弦的长度.
41.如图,在直三棱柱中,已知(1)证明:AC丄BC;(2)求三棱锥的体积.
42.如图四面体ABCD中,AB丄平面BCD,BD丄CD.求证:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.
43.在ABC中,AC丄BC,ABC=45°,D是BC上的点且ADC=60°,BD=20,求AC的长
44.据调查,某类产品一个月被投诉的次数为0,1,2的概率分别是0.4,0.5,0.1,求该产品一个月内被投诉不超过1次的概率
45.证明上是增函数
五、证明题(10题)46.己知sin(θ+α)=sin(θ+β),求证:
47.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
48.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
49.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
50.若x∈(0,1),求证:log3X3<log3X<X3.
51.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
52.△ABC的三边分别为a,b,c,为且,求证∠C=
53.
54.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2
+(y+1)2
=8.
55.己知
a
=(-1,2),b
=(-2,1),证明:cos〈a,b〉=4/5.
六、综合题(2题)56.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
57.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
参考答案
1.D
2.C
3.C等差数列的性质.a5=a1+4d=2+4d=6,d=1.
4.C
5.C函数的计算.f(-2)=2-2=1/4>0,则f(f(-2))=f(1/4)=1-=1-1/2=1/2
6.A
7.D不等式的计算.-2x2+x+3<0,2x2-x-3>0即(2x-3)(x+1)>0,x>3/2或x<-1.
8.C集合的并集.由两集合并集的定义可知,A∪B={1,2,3,4},故选C
9.D集合的包含关系的判断.两个集合只有一个公共元素2,所以M∩N={2}
10.B函数的单调性.∵y=1/2x2-Inx,∴y=x-1/x,由:y'<0,解得-1≤x≤1,又x>0,∴0<x≤1.
11.B线性回归方程的计算.将(x,y)代入:y=1+bx,得b=4
12.D圆的切线方程的性质.圆方程可化为C(x-l)2+(y-1)2=1,∴该圆是以(1,1)为圆心,以1为半径的圆,∵直线3x+4y=
13.C对数函数的图象和基本性质.
14.B因为反函数的图像是关于y=x对称,所以k=2.然后把一式中的x用y的代数式表达,再把x,y互换,代入二式,得到m=-3/2.
15.C
16.C
17.Bx2=1不能得到x=1,但是反之成立,所以是必要不充分条件。
18.C本题主要考查随机事件及其概率.任取两数都是偶数,共有C32=3种取法,所有取法共有C62=15种,故概率为3/15=1/5.
19.A
20.C点到直线的距离公式.圆(x+l)2+y2=2的圆心坐标为(-1,0),由y=x+3得x-y+3=0,则圆心到直线的距离d=
21.(x-1)2+(y-2)2=4圆标准方程.圆的标准方程为(x-a)2+(y-2)2=r2,a=1,b=2,r=2
22.3f(1)=2+1=3.
23.
,
24.72,
25.1/3充要条件及直线的斜率.l1⊥l2→2a/a-1=-1→(2a)+(a-1)=0,解得A=1/3
26.-3,
27.5分层抽样方法.因为男运动员30人,女运动员10人,所以抽出的女运动员有10f(10+30)×20=1/4×20=5人.
28.5n-10
29.
30.27
31.
32.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
33.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
34.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
35.
36.sinα
37.
38.证明:∵∴则,此函数为奇函数
39.原式=
40.∵(1)这条弦与抛物线两交点
∴
41.
42.
43.在指数△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20则,则
44.设事件A表示“一个月内被投诉的次数为0”,事件B表示“一个月内被投诉的次数为1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9
45.证明:任取且x1<x2∴即∴在是增函数
46.
47.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
48.
49.证明:考虑对数函数y=lgx的限制知
:当x∈(1,10)时,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B
50.
51.
∴PD//平面ACE.
52.
53.
54.
55.
56.解:(1)斜率k=5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 食品采购管理制度
- 企业环境的应急预案
- 幼儿园手工制作活动策划方案(3篇)
- 春节安全的应急预案范文(35篇)
- 老师工作计划11篇
- 高中体育述职报告5篇
- 高考地理二轮复习综合题专项训练1特征(点)描述类含答案
- 第二十三章 数据分析 综合检测
- 山西省太原市2024-2025学年七年级上学期期中地理试题(含答案)
- 河南省周口市项城市东街小学等校2024-2025学年四年级上学期11月期中数学试题
- 四大穿刺知识点考试试题及答案
- DB11-T 1796-2020文物建筑三维信息采集技术规程
- 海康威视视频车位诱导与反向寻车系统解决方案
- 小学生日常卫生小常识(课堂PPT)
- 幼儿园大班《风筝飞上天》教案
- 寄宿生防火、防盗、人身防护安全知识
- 弯管力矩计算公式
- 《Excel数据分析》教案
- 汽车低压电线束技术条件
- 水稻常见病虫害ppt
- 学生会考核表(共3页)
评论
0/150
提交评论