![传送系统的效率问题_第1页](http://file4.renrendoc.com/view/6c747a513ec660da4d3a6b90dfb44b49/6c747a513ec660da4d3a6b90dfb44b491.gif)
![传送系统的效率问题_第2页](http://file4.renrendoc.com/view/6c747a513ec660da4d3a6b90dfb44b49/6c747a513ec660da4d3a6b90dfb44b492.gif)
![传送系统的效率问题_第3页](http://file4.renrendoc.com/view/6c747a513ec660da4d3a6b90dfb44b49/6c747a513ec660da4d3a6b90dfb44b493.gif)
![传送系统的效率问题_第4页](http://file4.renrendoc.com/view/6c747a513ec660da4d3a6b90dfb44b49/6c747a513ec660da4d3a6b90dfb44b494.gif)
![传送系统的效率问题_第5页](http://file4.renrendoc.com/view/6c747a513ec660da4d3a6b90dfb44b49/6c747a513ec660da4d3a6b90dfb44b495.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-.z.传送系统的效率问题摘要工人生产进入稳态后,衡量传送系统效率这一问题,对于提高工厂机械化生产效率具有重要意义,此问题特点为变量多,针对这一特点我们应用了控制变量的数学方法解决〔通过合理假设〕。对于此问题,我们首先建立和概率模型,对模型进展了合理的理论证明和推导,所给出的理论证明结果大约为,并随机选取数据对理论结果进展验证,理论结果与模拟结果根本吻合。随后我们提出改良方案,即将每个钩子变为双钩组,对此方案我们建立了概率模型并进展了合理的理论证明和推导,所给出的理论证明结果大约为,并随机选取数据对理论结果进展验证,理论结果与模拟结果根本吻合。关键词:概率模型,控制变量法,二项式定理,方案改良。页码:1目录第一局部问题重述……〔3〕第二局部模型假设……〔4〕第三局部分析与建立模型………………〔5〕第四局部模型求解……〔6〕第五局部模型检验……〔8〕第六局部模型推广……〔9〕第七局部参考文献……〔11〕第八局部附录…………〔12〕页码:2问题重述在机械化生产车间里,排列整齐的工作台旁,工人们紧*的生产同一种产品,工作台上放一条传送带在运转,带上设置假设干钩子,工人将产品挂在经过他上方的钩子上带走。当生产进入稳定状态后,每个工人生产一件产品所需时间是不变的,而他挂产品的时刻是随机的。衡量这种传送系统的效率可以看它能否及时地把工人们生产的产品带走,即一定时间内带走产品数的多少。要求构造衡量传送系统效率的指标。页码:3模型假设有n个工人,其生产是相互独立的,生产周期是常数〔即生产一件产品所用时间为定值〕,n个工作台均匀排列。生产已进入稳态,即每个工人生产出一件产品的时刻在一个周期内是等可能性的。且在一个周期内n个工人生产的产品总数为n件在一周期内有m个钩子通过每一工作台上方,钩子均匀排列,到达第一个工作台上方的钩子都是空的。每个工人在任何时刻都能触到一只钩子,且只能触到一只钩子。在他生产出一件产品时,如果他能触到的钩子是空的,则可以将产品挂上带走;如果触到的钩子非空,则他只能将产品放下,此产品就退出这个传送系统。页码:4分析与建立模型〔一〕模型分析:工人们的生产周期虽然一样,但是由于各种随机因素的干扰,经过相当长时间后,他们生产完一件产品的时刻就不会一直,可以认为是随机的,并且在一个生产周期内任一时刻的可能性是一样的。由上分析,传送系统长期运转的效率等价于一周期的效率,而一周期的效率可以用它在一周期内能带走的产品数与一周期内生产的全部产品数之比来描述。〔二〕模型建立:将传送系统效率定义为一周期内带走的产品数与生产的全部产品数之比,记作D.设带走的产品数为s,生产的全部产品数显然为n,于是.只需要求出n即可。如果从工人的角度考虑,分析每个工人能将自己的产品挂上钩子的概率,则这个概率显然与工人所在的位置有关〔如第一个工人一定可以挂上〕,这样就使问题复杂化。我们从钩子的角度考虑,在稳态下钩子没有次序,处于同等的地位。假设能对一个周期内的m只钩子求出每只钩子非空〔即挂上产品〕的概率p,则s=mp.页码:5模型求解得到p的步骤如下:〔均对一周期内而言〕任一只钩子被*一名工人触到的概率为任一只钩子不被*一名工人触到的概率为由于每一只钩子间相互独立,故:任一只钩子不被所有工人触到的概率为,即为空钩的概率所以任一只钩子非空的概率为:p=〔1〕我们根据二项式定理得展开式中第三项其中较小展开式中第四项及其后项都更小,在此我们合理简化,只去展开式中的前三项页码:6在实际中n>>1,在此我们假定n>>1,则令,则〔2〕E越低,D越高。页码:7模型检验为检验以上模型的合理优化后是否准确,我们取一组比拟贴近实际情况的m与n,来比照〔1〕式与〔2〕式取n=10,m=40时,〔2〕式中,D=87.5%式中,D=89.4%比照得知道〔2〕式非常精准且简易计算我们最终的结论为,提高传送系统效率,即增大D减小E,在工人数n一定的情况下,E与钩子数m成反比,即m增大一倍,E降低一倍页码:8六.模型推广我们考虑一种提高传送系统效率的改良方案:在原有的每一个钩子的位置,放置两个钩子构成双钩组,即有2m个钩子,则传送系统的效率如何呢?与只是增加钩子数目至2m相比,哪个效率更高呢?易知,在双钩组的情况下,每组钩组在传送系统完毕后有三种情况:空钩组满钩组3.不满钩组任一组钩子被*一名工人触到的概率为任一组钩子不被*一名工人触到的概率为由于每一只钩子间相互独立,故:任一组钩子不被所有工人触到的概率为,即为空钩组的概率任一组钩子只被一名工人触到的概率为,即为不满钩组的概率满钩组的概率为我们根据二项式定理得页码:9在此我们同样只取前三项,则在实际中,n>>2,m>>1令则当n=10
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七年级数学上册第30课时销售问题和储蓄问题听评课记录新湘教版
- 湘教版数学八年级上册《1.1 分式》听评课记录
- 人教版历史七年级下册第1课《隋朝的统一与灭亡》听课评课记录
- 2022年新课标八年级上册道德与法治《7.1 关爱他人 》听课评课记录
- 生物技术创新合作开发合同(2篇)
- 理财委托合同(2篇)
- 人教版数学八年级下册20.1.1《平均数》听评课记录3
- 语文听评课记录九年级
- 人教版数学八年级上册《11.2.2三角形的外角》听评课记录1
- 数学七年级下学期《立方根》听评课记录
- 安全安全技术交底模板
- 房屋建筑工程投标方案(技术方案)
- 部编版一年级语文下册语文园地五《单元拓展-字族文》教学设计
- 静脉输液法操作并发症的预防及处理
- 牙外伤的远期并发症监测
- 2025年高考语文作文备考:议论文万能模板
- 重大事故隐患判定标准与相关事故案例培训课件(建筑)
- 《我的寒假生活》
- DZ/T 0430-2023 固体矿产资源储量核实报告编写规范(正式版)
- (高清版)WST 442-2024 临床实验室生物安全指南
- 历史时间轴全
评论
0/150
提交评论