湘教版九年级数学下册圆圆的对称性教案与同步练习_第1页
湘教版九年级数学下册圆圆的对称性教案与同步练习_第2页
湘教版九年级数学下册圆圆的对称性教案与同步练习_第3页
湘教版九年级数学下册圆圆的对称性教案与同步练习_第4页
湘教版九年级数学下册圆圆的对称性教案与同步练习_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湘教版九年级数学下册第2章圆§圆的对称性教案与同步练习教学目标:【知识与技能】1.通过观察实验操作,使学生理解圆的定义.2.结合图形理解弧、等弧、弦、等圆、半圆、直径等有关概念.3.圆既是轴对称图形又是中心对称图形.4.点与圆的位置关系.【过程与方法】通过举出生活中常见圆的例子,经历观察画图的过程多角度体会和认识圆.【情感态度】结合本课教学特点,向学生进行爱国主义教育和美育渗透.激发学生观察、探究、发现数学问题的兴趣和欲望.【教学重点】圆、等圆、弧、等弧、弦、半圆、直径等有关概念的理解.【教学难点】圆、等圆、弧、等弧、弦、半圆、直径等有关概念的区别与联系.教学过程:一、情境导入,初步认识圆是生活中常见的图形,许多物体都给我们以圆的形象.1.观察以上图形,体验圆的和谐与美丽.请大家说说生活中还有哪些圆形.2.请同学们在草稿纸上用圆规画圆,体验画圆的过程,想想圆是怎样形成的.【教学说明】学生很容易找出生活中关于圆的例子,通过画圆,有利于学生从直观形象认识上升到抽象理性认识.二、思考探究,获取新知1.圆的定义问题 如教材P43图所示,通过用绳子和圆规画圆的过程,你发现了什么?由此你能得到什么结论?【教学说明】由于学生通过操作已经得出圆的定义,教师加以规范,有利于加深印象.如右图:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的圆形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.注意:圆指的是圆周,不是圆面.【教学说明】使学生能准确地理解并掌握圆的定义.2.点与圆的位置关系一般地,设⊙O的半径为r,点P到圆心O的距离为d,则有(1)点P在⊙O内d<r(2)点P在⊙O上d=r(3)点P在⊙O外d>r3.与圆有关的概念弦:连接圆上任意两点的线段叫做弦.(如:线段AB、AC)直径:经过圆心的弦(如AB)叫做直径.注:直径是特殊的弦,但弦不一定是直径.弧:圆上任意两点间的部分叫做圆弧,简称弧.如图,以A、B为端点的弧记作,,读作:弧AB.注:①圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.②大于半圆的弧,用三个点表示,如图中的,叫做优弧.小于半圆的弧,用两个点表示,如图中的,叫做劣弧.等圆:能够重合的两个圆叫做等圆.注:半径相等的两个圆是等圆,反过来,同圆或等圆的半径相等.等弧:在等圆或同圆中,能够互相重合的弧叫等弧.注:①等弧是全等的,不仅是弧的长度相等.②等弧只存在于同圆或等圆中.【教学说明】结合图形,使学生准确地掌握与圆有关的概念,为后面的学习打下基础.4.圆的对称性(1)圆是中心对称图形,圆心是它的对称中心.(2)圆是轴对称图形,任意一条直径所在的直线都是圆的对称轴.【教学说明】上述两个结论是通过教材P44探究1、2而得出来的,教师应引导学生仔细体会,必要时可通过画图或折叠圆心纸片演示.思考 车轮为什么做成圆形的?如果车轮不是圆的(如椭圆或正方形等),坐车人会是什么感觉?【分析】把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面滚动时,车轮中心与平面的距离保持不变.因此,车辆在平路上行驶时,坐车的人会感到非常平稳.如果车轮不是圆的,车辆在行驶时,坐车人会感觉到上下颠簸,不舒服.三、运用新知,深化理解1.在Rt△ABC中,∠C=90°,AB=3cm,BC=2cm,以点A为圆心,2cm长为半径作圆,则点C()A.在⊙A内B.在⊙A上C.在⊙A外D.可能在⊙A上也可能在⊙A外2.(1)以点A为圆心,可以画____个圆.(2)以已知线段AB的长为半径,可以画____个圆.(3)以A为圆心AB长为半径,可以画___个圆.3.如图,半圆的直径AB=________.第3题图 第4题图4.如图,图中共有____条弦.【教学说明】学生自主完成,加深对新学知识的理解和检测对圆的有关概念的掌握情况,对学生的疑惑教师及时指导,并进行强化.【答案】 2.(1)无数 (2)无数 (3)1 3. 四、师生互动,课堂小结1.师生共同回顾圆的两种定义,弦(直径),弧(半圆、优弧、劣弧、等弧),等圆等知识点.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳,对于某些概念性的知识,要结合图形加以区别和理解.五、课堂作业1.布置作业:教材页“习题”2,3题.2.完成同步练习册中本课时的练习.六、教学反思本节课是从学生感受生活中圆的应用开始,到通过学生动手画圆,培养学生动手、动脑习惯,在操作过程中观察圆的特点,加深对所学知识的认识,并运用所学知识解决实际问题,体验应用知识的成就感,激发他们学习的兴趣.湘教版九年级数学下册第2章圆§圆的对称性同步练习一.选择题(共10小题)1.下列说法,正确的是()A.弦是直径B.弧是半圆C.半圆是弧 D.过圆心的线段是直径2.点A、O、D与点B、O、C分别在同一直线上,图中弦的条数为()A.2 B.3 C.4 D.53.下列说法中,正确的是()A.两个半圆是等弧B.同圆中优弧与半圆的差必是劣弧C.长度相等的弧是等弧D.同圆中优弧与劣弧的差必是优弧4.有下列四个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中错误说法的个数是()A.1 B.2 C.3 D.45.下列说法中,结论错误的是()A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧6.如图,在半圆的直径上作4个正三角形,如这半圆周长为C1,这4个正三角形的周长和为C2,则C1和C2的大小关系是()A.C1>C2 B.C1<C2 C.C1=C2 D.不能确定7.过圆内一点A可以作出圆的最长弦有()A.1条 B.2条 C.3条 D.1条或无数条8.下列结论错误的是()A.圆是轴对称图形B.圆是中心对称图形C.半圆不是弧D.同圆中,等弧所对的圆心角相等9.一个点到圆的最小距离为3cm,最大距离为8cm,则该圆的半径是()A.5cm或11cm B. C. D.或10.在直角坐标平面中,M(2,0),圆M的半径为4,那么点P(﹣2,3)与圆M的位置关系是()A.点P在圆内 B.点P在圆上 C.点P在圆外 D.不能确定二.填空题(共8小题)11.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是.12.已知⊙P在直角坐标平面内,它的半径是5,圆心P(﹣3,4),则坐标原点O与⊙P的位置关系是.13.已知⊙O的半径为5,点A在⊙O外,那么线段OA的取值范围是.14.若⊙O的半径为6cm,则⊙O中最长的弦为厘米.15.圆上各点到圆心的距离都等于,到圆心距离等于半径的点都在.16.下列说法正确的是()填序号.①半径不等的圆叫做同心圆;②优弧一定大于劣弧;③不同的圆中不可能有相等的弦;④直径是同一个圆中最长的弦.17.与已知点A的距离为3cm的点所组成的平面图形是.18.如图,在⊙O中,点A、O、D和点B、O、C分别在一条直线上,图中共有条弦,它

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论