2023年江西省南昌市普通高校对口单招数学自考真题(含答案)_第1页
2023年江西省南昌市普通高校对口单招数学自考真题(含答案)_第2页
2023年江西省南昌市普通高校对口单招数学自考真题(含答案)_第3页
2023年江西省南昌市普通高校对口单招数学自考真题(含答案)_第4页
2023年江西省南昌市普通高校对口单招数学自考真题(含答案)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年江西省南昌市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.下列各组数中成等比数列的是()A.

B.

C.4,8,12

D.

2.椭圆x2/16+y2/9的焦点坐标为()A.(,0)(-,0)

B.(4,0)(-4,0)

C.(3,0)(-3,0)

D.(7,0)(-7,0)

3.A.10B.5C.2D.12

4.A.3B.4C.5D.6

5.直线L过(-1,2)且与直线2x-3y+5=0垂直,则L的方程是()A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+6=0D.2x-3y+8=0

6.已知集合M={0,1,2,3},N={1,3,4},那么M∩N等于()A.{0}B.{0,1}C.{1,3}D.{0,1,2,3,4}

7.已知a=(1,2),则|a|=()A.1

B.2

C.3

D.

8.直线ax+by+b-a=0与圆x2+y2-x-2=0的位置关系是()A.相离B.相交C.相切D.无关

9.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与x售价(元)满足一次函数:m=162-3x,若要每天获得最大的销售利润,每件商品的售价应定为()A.30元B.42元C.54元D.越高越好

10.已知{<an}为等差数列,a3+a8=22,a6=7,则a5=()</aA.20B.25C.10D.15

11.已知A(1,1),B(-1,5)且,则C的坐标为()A.(0,3)B.(2,-4)C.(1,-2)D.(0,6)

12.A.6B.7C.8D.9

13.在等差数列中,若a3+a17=10,则S19等于()A.75B.85C.95D.65

14.A.π

B.C.2π

15.

16.函数y=lg(1-x)(x<0)的反函数是()A.y=101-x(x<0)

B.y=101-x(x>0)

C.y=1-10x(x<0)

D.y=1-10x(x>0)

17.已知椭圆x2/25+y2/m2=1(m<0)的右焦点为F1(4,0),则m=()A.-4B.-9C.-3D.-5

18.正方形ABCD的边长为12,PA丄平面ABCD,PA=12,则点P到对角线BD的距离为()A.12

B.12

C.6

D.6

19.袋中有大小相同的三个白球和两个黑球,从中任取两个球,两球同色的概率为()A.1/5B.2/5C.3/5D.4/5

20.设集合A={x|x≤2或x≥6},B={x||x-1|≤3},则为A∩B()A.[-2,2]B.[-2,4]C.[-4,4]D.[2,4]

二、填空题(10题)21.函数y=3sin(2x+1)的最小正周期为

22.五位同学站成一排,其中甲既不站在排头也不站在排尾的排法有_____种.

23.拋物线的焦点坐标是_____.

24.1+3+5+…+(2n-b)=_____.

25.

26.已知_____.

27.

28.

29.若log2x=1,则x=_____.

30.不等式(x-4)(x+5)>0的解集是

三、计算题(10题)31.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

32.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

33.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

34.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

35.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

36.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

37.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

38.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

39.解不等式4<|1-3x|<7

40.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

四、简答题(10题)41.证明:函数是奇函数

42.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。

43.在拋物线y2=12x上有一弦(两端点在拋物线上的线段)被点M(1,2)平分.(1)求这条弦所在的直线方程;(2)求这条弦的长度.

44.如图,四棱锥P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求证:BC丄平面PAC。(2)求点B到平面PCD的距离。

45.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。

46.化简

47.已知椭圆和直线,求当m取何值时,椭圆与直线分别相交、相切、相离。

48.在等差数列中,已知a1,a4是方程x2-10x+16=0的两个根,且a4>a1,求S8的值

49.化简

50.一条直线l被两条直线:4x+y+6=0,3x-5y-6=0截得的线段中点恰好是坐标原点,求直线l的方程.

五、解答题(10题)51.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

52.如图,在四棱锥P—ABCD中,平面PAD丄平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.连接BD求证:(1)直线EF//平面PCD;(2)平面BEF丄平面PAD.

53.已知函数f(x)=x3-3x2-9x+1.(1)求函数f(x)的单调区间.(2)若f(x)-2a+1≥0对Vx∈[-2,4]恒成立,求实数a的取值范围.

54.成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b3,b4,b5(1)求数列{bn}的通项公式;(2)数列{bn}的前n项和为Sn,求证:数列{Sn+5/4}是等比数列

55.已知直线经过椭圆C:x2/a2+y2/b2=1(a>b>0)的一个顶点B和一个焦点F.(1)求椭圆的离心率;(2)设P是椭圆C上动点,求|PF|-|PB|的取值范围,并求|PF|-|PB||取最小值时点P的坐标.

56.

57.

58.已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为,其中左焦点F(-2,0).(1)求椭圆C的方程;(2)若直线:y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆:x2+y2=l上,求m的值.

59.己知sin(θ+α)=sin(θ+β),求证:

60.

六、单选题(0题)61.已知集合M={0,1,2,3},N={1,3,4},那么M∩N等于()A.{0}B.{0,1}C.{1,3}D.{0,1,2,3,4}

参考答案

1.B由等比数列的定义可知,B数列元素之间比例恒定,所以是等比数列。

2.A椭圆的定义c2=a2-b2=7,所以c=,所以焦点坐标为(,0)(-,0).

3.A

4.B线性回归方程的计算.将(x,y)代入:y=1+bx,得b=4

5.A由于直线与2x-3y+5=0垂直,因此可以设直线方程为3x+2y+k=0,又直线L过点(-1,2),代入直线方程得3*(-1)+2*2+k=0,因此k=-1,所以直线方程为3x+2y-1=0。

6.C集合的运算∵M={0,1,2,3},N={1,3,4},∴M∩N={1,3},

7.D向量的模的计算.|a|=

8.B

9.B函数的实际应用.设日销售利润为y元,则y=(x-30)(162-3x),30≤x≤54,将上式配方得y=-3(x-42)2+432,所以x=42时,利润最大.

10.D由等差数列的性质可得a3+a8=a5+a6,∴a5=22-7=15,

11.A

12.D

13.C

14.C

15.D

16.D

17.C椭圆的定义.由题意知25-m2=16,解得m2=9,又m<0,所以m=-3.

18.D

19.B

20.A由题可知,B={x|-4≤x≤3},所以A∩B=[-2,2]。

21.

22.72,

23.

,因为p=1/4,所以焦点坐标为.

24.n2,

25.-1/16

26.-1,

27.R

28.-7/25

29.2.指数式与对数式的转化及其计算.指数式转化为对数式x=2.

30.{x|x>4或x<-5}方程的根为x=4或x=-5,所以不等式的解集为{x|x>4或x<-5}。

31.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

32.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

33.

34.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

35.

36.

37.

38.

39.

40.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

41.证明:∵∴则,此函数为奇函数

42.

43.∵(1)这条弦与抛物线两交点

44.证明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC则BC丄平面PAC(2)设点B到平面PCD的距离为hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1则△ADC为等边三角形,且AC=1PA=

PD=PC=2

45.

46.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2

47.∵∴当△>0时,即,相交当△=0时,即,相切当△<0时,即,相离

48.方程的两个根为2和8,又∴又∵a4=a1+3d,∴d=2∵。

49.sinα

50.

51.

∴PD//平面ACE.

52.(1)如图,在APAD中,因为E,F分别为AP,AD的中点,所以EF//PD又因为EF不包含于平面PCD,PD包含于平面PCD,所以直线EF//平面PCD.(2)因为AB=AD,∠BAD=60°,所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD因为平面PAD⊥平面ABCD,所以BF包含于平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD又因为BF包含于平面BEF,所以平面BEF⊥平面PAD.

53.

54.(1)设成等差数列的三个正数分别为a-d,a,a+d依题意,得a-d+a+a+d=15,解得a=5,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论