2023年广东省云浮市普通高校对口单招数学自考模拟考试(含答案)_第1页
2023年广东省云浮市普通高校对口单招数学自考模拟考试(含答案)_第2页
2023年广东省云浮市普通高校对口单招数学自考模拟考试(含答案)_第3页
2023年广东省云浮市普通高校对口单招数学自考模拟考试(含答案)_第4页
2023年广东省云浮市普通高校对口单招数学自考模拟考试(含答案)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年广东省云浮市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.在△ABC中,角A,B,C所对边为a,b,c,“A>B”是a>b的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件

2.A.B.C.D.

3.5人站成一排,甲、乙两人必须站两端的排法种数是()A.6B.12C.24D.120

4.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4πB.3πC.2πD.π

5.A.N为空集

B.C.D.

6.已知的值()A.

B.

C.

D.

7.设是l,m两条不同直线,α,β是两个不同平面,则下列命题中正确的是()A.若l//α,α∩β=m,则l//m

B.若l//α,m⊥l,则m⊥α

C.若l//α,m//α,则l//m

D.若l⊥α,l///β则a⊥β

8.A.第一象限角B.第二象限角C.第一或第二象限角D.小于180°的正角

9.下列命题错误的是()A.对于两个向量a,b(a≠0),如果有一个实数,使b=a,则a与b共线

B.若|a|=|b|,则a=b

C.若a,b为两个单位向量,则a·a=b·b

D.若a⊥b,则a·b=0

10.若函数f(x)=x2+mx+1有两个不同的零点,则实数m的取值范围是()A.(-1,1)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-l)∪(l,+∞)

11.若函数f(x-)=x2+,则f(x+1)等于()A.(x+1)2+

B.(x-)2+

C.(x+1)2+2

D.(x+1)2+1

12.直线x+y+1=0的倾斜角为()A.

B.

C.

D.-1

13.(X-2)6的展开式中X2的系数是D()A.96B.-240C.-96D.240

14.A.B.C.D.R

15.函数f(x)=x2+2x-5,则f(x-1)等于()A.x2-2x-6

B.x2-2x-5

C.x2-6

D.x2-5

16.圆(x+1)2+y2=2的圆心到直线y=x+3的距离为()A.1

B.2

C.

D.

17.己知向量a

=(2,1),b

=(-1,2),则a,b之间的位置关系为()A.平行B.不平行也不垂直C.垂直D.以上都不对

18.已知向量a=(1,3)与b=(x,9)共线,则实数x=()A.2B.-2C.-3D.3

19.有四名高中毕业生报考大学,有三所大学可供选择,每人只能填报一所大学,则报考的方案数为()A.

B.

C.

D.

20.A.B.{3}

C.{1,5,6,9}

D.{1,3,5,6,9}

二、填空题(10题)21.

22.己知两点A(-3,4)和B(1,1),则=

23.i为虚数单位,1/i+1/i3+1/i5+1/i7____.

24.设平面向量a=(2,sinα),b=(cosα,1/6),且a//b,则sin2α的值是_____.

25.到x轴的距离等于3的点的轨迹方程是_____.

26.在△ABC中,若acosA=bcosB,则△ABC是

三角形。

27.函数的最小正周期T=_____.

28.若l与直线2x-3y+12=0的夹角45°,则l的斜线率为_____.

29.函数的定义域是_____.

30.

三、计算题(10题)31.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

32.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

33.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

34.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

35.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

36.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

37.解不等式4<|1-3x|<7

38.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

39.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

40.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

四、简答题(10题)41.拋物线的顶点在原点,焦点为椭圆的左焦点,过点M(-1,-1)引抛物线的弦使M为弦的中点,求弦长

42.已知双曲线C的方程为,离心率,顶点到渐近线的距离为,求双曲线C的方程

43.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。

44.求k为何值时,二次函数的图像与x轴(1)有2个不同的交点(2)只有1个交点(3)没有交点

45.证明上是增函数

46.解关于x的不等式

47.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。

48.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.

49.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.

50.己知边长为a的正方形ABCD,PA丄底面ABCD,PA=a,求证,PC丄BD

五、解答题(10题)51.

52.给定椭圆C:x2/a2+y2/b2(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆已知椭圆C的离心率为/2,且经过点(0,1).(1)求椭圆C的方程;(2)求直线l:x—y+3=0被椭圆C的伴随圆C1所截得的弦长.

53.已知数列{an}是等差数列,且a2=3,a4+a5+a6=27(1)求通项公式an(2)若bn=a2n,求数列{bn}的前n项和Tn.

54.已知数列{an}是首项和公差相等的等差数列,其前n项和为Sn,且S10=55.(1)求an和Sn(2)设=bn=1/Sn,数列{bn}的前n项和为T=n,求Tn的取值范围.

55.

56.

57.已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为F1和F2,且|F1F2|=2,点(1,3/2)在该椭圆上.(1)求椭圆C的方程;(2)过F1的直线L与椭圆C相交于A,B两点,以F2为圆心为半径的圆与直线L相切,求△AF2B的面积.

58.

59.等差数列{an}中,a7=4,a19=2a9.(1)求{an}的通项公式;(2)设bn=1/nan求数列{bn}的前n项和Sn.

60.已知{an}为等差数列,且a3=-6,a6=0.(1)求{an}的通项公式;(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求{bn}的前n项和公式.

六、单选题(0题)61.已知A是锐角,则2A是A.第一象限角B.第二象限角C.第一或第二象限角D.D小于180°的正角

参考答案

1.C正弦定理的应用,充要条件的判断.大边对大角,大角也就对应大边.

2.C

3.B

4.C立体几何的侧面积.由几何体的形成过程所得几何体为圆柱,底面半径为1,高为1,其侧面积S=2πrh=2π×1×1=2π.

5.D

6.A

7.D空间中直线与平面的位置关系,平面与平面的位置关系.对于A:l与m可能异面,排除A;对于B;m与α可能平行或相交,排除B;对于C:l与m可能相交或异面,排除C

8.D

9.B向量包括长度和方向,模相等方向不一定相同,所以B错误。

10.C一元二次方程的根的判别以及一元二次不等式的解法.由题意知,一元二次方程x2+mx+1=0有两个不等实根,可得△>0,即m2-4>0,解得m>2或m<-2.故选C

11.C由题可知,f(0)=2=f(-1+1),因此x=-1时,函数值为2,所以正确答案为C。

12.C由直线方程可知其斜率k=-1,则倾斜角正切值为tanα=-1,所以倾斜角为3π/4。

13.D

14.B

15.Cf(x-1)=(x-1)2+2(x-1)-5=x2-2x+1+2x-2-5=x2-6,故选C。

16.C点到直线的距离公式.圆(x+1)2+y2=2的圆心坐标为(-1,0),由y=x+3得x-y+3=0,则圆心到直线的距离d=

17.C

18.D

19.C

20.D

21.1-π/4

22.

23.0.复数的运算.1/i+1/i3+1/i5+1/i7=-i+i-i+i=0

24.2/3平面向量的线性运算,三角函数恒等变换.因为a//b,所以2x1/6-sinαcosα=0即sinαcosα=1/3.所以sin2α=2sinαcosα=2/3.

25.y=±3,点到x轴的距离就是其纵坐标,因此轨迹方程为y=±3。

26.等腰或者直角三角形,

27.

,由题可知,所以周期T=

28.5或,

29.{x|1<x<5且x≠2},

30.

31.

32.

33.

34.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

35.

36.

37.

38.

39.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

40.

41.

42.

43.

44.∵△(1)当△>0时,又两个不同交点(2)当A=0时,只有一个交点(3)当△<0时,没有交点

45.证明:任取且x1<x2∴即∴在是增函数

46.

47.

48.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=

49.(1)(2)

50.证明:连接ACPA⊥平面ABCD,PC是斜线,BD⊥ACPC⊥BD(三垂线定理)

51.

52.

53.

54.(1)设数列{an}的公差为d则a1=d,an=a1+(n-l)d=nd,由Sn=a1+a2+...+a10=55d=55,解得d=1,所以an=n,Sn=(1+n)n/2=1/2n(n+1)(2)由(1)得bn=2/n(n+1)=2(1/n-1/n)所以Tn=2(1-1/2)+2(1/2-1/3)+2(1/3-1/4)+...+2(1/n-1/n+1)=2(1-1/n+1).由于2(1-1/n+1)随n的增大而增大,可得1≤Tn<2.即Tn的取值范围是[1,2).

55.

56.

57.

以F2为圆心为半径的圆的方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论