




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年山东省东营市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.A.一B.二C.三D.四
2.设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则Cu(A∪B)=()A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}
3.已知向量a=(1,2),b=(3,1),则b-a=()A.(-2,1)B.(2,-1)C.(2,0)D.(4,3)
4.若向量A.(4,6)B.(-4,-6)C.(-2,-2)D.(2,2)
5.A.B.C.D.
6.A.10B.5C.2D.12
7.A.B.C.D.
8.若事件A与事件ā互为对立事件,则P(A)+P(ā)等于()A.1/4B.1/3C.1/2D.1
9.把6本不同的书分给李明和张强两人,每人3本,不同分法的种类数为()A.
B.
C.
D.
10.已知的值()A.
B.
C.
D.
11.己知向量a=(3,-2),b=(-1,1),则3a+2b
等于()A.(-7,4)B.(7,4)C.(-7,-4)D.(7,-4)
12.已知角α的终边经过点P(2,-1),则(sinα-cosα)/(sinα+cosα)=()A.3B.1/3C.-1/3D.-3
13.A.第一象限角B.第二象限角C.第三象限角D.第四象限角
14.A.3
B.8
C.
15.椭圆的中心在原点,焦距为4,一条准线为x=-4,则该椭圆的方程为()A.x2/16+y2/12=1
B.x2/12+y2/8=1
C.x2/8+y2/4=1
D.x2/12+y2/4=1
16.若a<b<0,则下列结论正确的是()A.a2<b2
B.a3<b<b3</b
C.|a|<|b|
D.a/b<1
17.袋中装有4个大小形状相同的球,其中黑球2个,白球2个,从袋中随机抽取2个球,至少有一个白球的概率为()A.
B.
C.
D.
18.设a=1/2,b=5-1/2则()A.a>bB.a=bC.a<bD.不能确定
19.等差数列{an}中,若a2+a4+a9+a11=32,则a6+a7=()A.9B.12C.15D.16
20.A.-1B.0C.2D.1
二、填空题(10题)21.则a·b夹角为_____.
22.从含有质地均匀且大小相同的2个红球、N个白球的口袋中取出一球,若取到红球的概率为2/5,则取得白球的概率等于______.
23.
24.已知等差数列{an}的公差是正数,且a3·a7=-12,a4+a6=-4,则S20=_____.
25.
26.
27.
28.执行如图所示的程序框图,若输入的k=11,则输出的S=_______.
29.已知数列{an}是各项都是正数的等比数列,其中a2=2,a4=8,则数列{an}的前n项和Sn=______.
30.双曲线3x2-y2=3的渐近线方程是
。
三、计算题(10题)31.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
32.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
33.解不等式4<|1-3x|<7
34.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
35.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
36.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
37.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
38.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
39.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
40.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
四、简答题(10题)41.解关于x的不等式
42.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.
43.已知是等差数列的前n项和,若,.求公差d.
44.化简
45.化简a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)
46.已知a是第二象限内的角,简化
47.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.
48.据调查,某类产品一个月被投诉的次数为0,1,2的概率分别是0.4,0.5,0.1,求该产品一个月内被投诉不超过1次的概率
49.已知抛物线的焦点到准线L的距离为2。(1)求拋物线的方程及焦点下的坐标。(2)过点P(4,0)的直线交拋物线AB两点,求的值。
50.如图,在直三棱柱中,已知(1)证明:AC丄BC;(2)求三棱锥的体积.
五、解答题(10题)51.
52.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
53.给定椭圆C:x2/a2+y2/b2(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆已知椭圆C的离心率为/2,且经过点(0,1).(1)求椭圆C的方程;(2)求直线l:x—y+3=0被椭圆C的伴随圆C1所截得的弦长.
54.已知等比数列{an}的公比q==2,且a2,a3+1,a4成等差数列.⑴求a1及an;(2)设bn=an+n,求数列{bn}前5项和S5.
55.设函数f(x)=x3-3ax+b(a≠0).(1)若曲线y=f(x)在点(2,f(x))处与直线y=8相切,求a,b的值;(2)求函数f(x)的单调区间与极值点.
56.已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为,其中左焦点F(-2,0).(1)求椭圆C的方程;(2)若直线:y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆:x2+y2=l上,求m的值.
57.
58.等差数列{an}中,a7=4,a19=2a9.(1)求{an}的通项公式;(2)设bn=1/nan求数列{bn}的前n项和Sn.
59.若x∈(0,1),求证:log3X3<log3X<X3.
60.
六、单选题(0题)61.若等比数列{an}满足,a1+a3=20,a2+a4=40,则公比q=()A.1B.2C.-2D.4
参考答案
1.A
2.A并集,补集的运算∵A∪B={1,3,4,5}...Cu(AUB)={2,6},
3.B平面向量的线性运算.由于a=(1,2),b=(3,1),于是b-a=(3,1)-(1,2)=(2,-1)
4.A向量的运算.=(l,2)+(3,4)=(4,6).
5.C
6.A
7.A
8.D
9.D
10.A
11.D
12.D三角函数的化简求值.三角函数的定义.因为角a终边经过点P(2,-1),所以tanα=-1/2,sinα-cosα/sinα+cosα=tanα-1/tanα+1=(-1/2-1)f(-1/2+1)=-3
13.B
14.A
15.C椭圆的标准方程.椭圆的焦距为4,所以2c=4,c=2因为准线为x=-4,所以椭圆的焦点在x轴上,且-a2/c=-4,所以a2=4c=8,b2=a2-c2=8-4=4,所以椭圆的方程为x2/8+y2/4+=1
16.B
17.D从中随即取出2个球,每个球被取到的可能性相同,因此所有的取法为,所取出的的2个球至少有1个白球,所有的取法为,由古典概型公式可知P=5/6.
18.A数值的大小判断
19.D∵{an}是等差数列,所以a2+a11=a4+a9=a6+a7.∵a2+a4+a9+a11=32,所以a6+a7=16.
20.D
21.45°,
22.3/5古典概型的概率公式.由题可得,取出红球的概率为2/2+n=2/5,所以n=3,即白球个数为3,取出白球的概率为3/5.
23.3/49
24.180,
25.
26.5
27.λ=1,μ=4
28.15程序框图的运算.模拟程序的运行,可得k=11,n=1,S=1不满足条件S>11,执行循环体,n=2,S=3,不满足条件S>11,执行循环体,n=3,S=6,不满足条件S>11,执行循环体,n=4,S=10,不满足条件S>11,执行循环体,N=5,S=15,此时,满足条件S>11,退出循环,输出S的值为15.故答案为15.
29.2n-1
30.
,
31.
32.
33.
34.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
35.
36.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
37.
38.
39.
40.
41.
42.
∴
∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴
∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵
∴
若时
故当X<-1时为增函数;当-1≤X<0为减函数
43.根据等差数列前n项和公式得解得:d=4
44.sinα
45.原式=
46.
47.(1)∵
∴又∵等差数列∴∴(2)
48.设事件A表示“一个月内被投诉的次数为0”,事件B表示“一个月内被投诉的次数为1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9
49.(1)拋物线焦点F(,0),准线L:x=-,∴焦点到准线的距离p=2∴抛物线的方程为y2=4x,焦点为F(1,0)(2)直线AB与x轴不平行,故可设它的方程为x=my+4,得y2-4m-16=0由设A(x1,x2),B(y1,y2),则y1y2=-16∴
50.
51.
52.
53.
54.(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流与信息技术整合的策略试题及答案
- 加强信息素养的图书管理员试题及答案
- 2024年计算机二级考试全科试题及答案
- 注册会计师在企业中的角色试题及答案
- 宠物殡葬师社会责任感试题及答案
- 投资咨询工程师战略选择试题及答案
- 生态位与生物多样性试题及答案
- 学习投资理论的有效方法试题及答案
- 黑龙江民族职业学院《教师工作实务》2023-2024学年第二学期期末试卷
- 黑龙江省伊春市伊春区2025年数学三下期末质量跟踪监视模拟试题含解析
- 先兆流产课件-课件
- 2022年北京市公务员录用考试《行测》真题及答案解析
- DB11T 1028-2021 民用建筑节能门窗工程技术标准
- 院前急救课件教学课件
- 刑事案件会见笔录(侦查阶段)
- 2023年四川绵阳中考满分作文《照亮》
- 麦肯锡和波士顿解决问题方法和创造价值技巧
- 慢性肺源性心脏病的护理(内科护理学第七版)
- 二 《“友邦惊诧”论》(同步练习)解析版
- 2023年婚检培训试题
- 病例汇报课件(完整版)
评论
0/150
提交评论