版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初等数学补充知识1.公约数和最大公约数几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
例如:12的约数有:1,2,3,4,6,12;
18的约数有:1,2,3,6,9,18。
12和18的公约数有:1,2,3,6.其中6是12和18的最大公约数,记作(12,18)=6。
2.公倍数和最小公倍数
几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
例如:12的倍数有:12,24,36,48,60,72,84,…
18的倍数有:18,36,54,72,90,…
12和18的公倍数有:36,72,….其中36是12和18的最小公倍数,记作[12,18]=363、1既不是质数,也不是合数.这样,自然数在按约数个数分类,可以分成:质数、合数和1.偶数中只有2是质数,而且是所有质数中最小的一个.除2以外所有的偶数都是合数,除2以外所有的质数都是奇数.每个合数都可以写成几个质数相乘的形式,这几个质数就叫做这个合数的质因数.例如,因为70=2×5×7,所以2,5,7是70的质因数.把一个合数用质数相乘的形式表示出来,叫做分解质因数.例如,60=2×2×3×5=22×3×5,把60这个合数用2×2×3×5或22×3×5的形式来表示,就是把60分解质因数.例1两个质数的积是46,求这两个质数的和.分析:两个质数的积是46,46是偶数,只能是一个奇质数与一个偶质数的积,而偶质数只有2,因此很容易得出另外的质数,从而问题得以解决.解:因为46是偶数,因此它必是一个奇质数与一个偶质数的积,而偶质数只有2,另一质数46÷2=23,所以2与23的和为25.例2用2,3,4,5中的三个数能组成哪些三位质数?分析:首先考虑个位数字是几,如果个位数字是2或4,这样的三位数必能被2整除,因此这样的三位数不会是质数,如果个位数字是5,这样的三位数必能被5整除,这样的三位数也不会是质数,所以个位数字只能是3,再由剩下的三个数字组成百位、十位,得出个位数字是3的三位数为:243,423,253,523,453,543,最后根据质数的判断方法,得到所求的质数.解:如果组成的三位数的个位数字是2、4、5时,这个数必能被2或5整除,因此个位数字只能是3,而个位数字是3的三位数有243,423,253,523,453,543,其中243,423,453,543均能被3整除,253能被11整除,所以只有523是质数.质数的判断方法是,当一个数比较小时,用定义直接判断,但这个数比较大时,通常采用查质数表,最好记住100以内的所有质数.在没有质数表的情况下,可以用质数从小到大的顺序逐个地去试除.如果能被其中某一个质数整除,就说明这个数是合数,如果除到商已比试除的质数小,还不能被这些质数中的任何一个整除,那么这个数一定是质数.例如,判断100以内的数是否是质数,只需用2、3、5、7这四个质数去试除,如果没有一个能整除它,这个数一定是质数,否则不是质数.判断97是不是质数,因为97不能被2,3,5,7中的任何一个整除,因此97是质数.为什么不必去试除比97小的所有的质数呢?因为97不能被2,3,5,7中的任何一个整除,它就一定不能被4,6,8,9,10等数(分别为2,3,5的倍数)整除,又因为,如果用11或大于11的质数去试除,97÷11=8…9,97÷13=7…6,其商为8、7,比除数还小,都已试除过,因此判断100以内的数是否是质数只需用2,3,5,7去试除.判断200以内的数是否是质数,只需用2,3,5,7,11,13,17这七个质数去试除;判断300以内的质数,只需用2到17这七个质数去试除;判断400以内的质数,只需用20以内的八个质数与去试除;判断500以内的质数,只需2到23的质数去试除.其余可用类似的方法推出,你可以思考一下1000以内的质数如何判断?例3将40,44,45,63,65,78,99,105这八个数平分成两组,使每组四个数的乘积相等.分析:如果采用观察、计算调整的方法是比较麻烦的.要使两组数的乘积相等,只有两组数中的质因数相同,而且质因数的个数也相同,就可以了,所以从这八个数分解质因数入手,根据各质因数的个数,进行适当的搭配,便能找出问题的答案.解:将八个数分解成质因数:40=23×544=22×1145=32×563=32×765=5×1378=2×3×1399=32×11105=3×5×7这八个数分解质因数后一共有6个2,8个3,4个5,2个7,2个11,2个13.因此,这八个数被分成两组后,每一组应含有3个2,4个3,2个5,1个7,1个11,1个13,这样可以得到两组分别为:40,63,65,99和44,45,78,105.例4九个连续自然数中至多有四个质数,例如1至9中有2、3、5、7四个质数.请在200以内再找出五组这样的质数.分析:9个连续自然数中至多有5个奇数.在两位数中,个位是5的数必能被5整除,而且三个连续的奇数必有一个能被3整除,所以只有当个位数字为5的两位数又能被3整除时,其余的四个奇数才有可能是质数.当找到一组这样的两位以上的质数时,另一组与这组对应的数的差必定是30的倍数.按照上述办法找出后,再根据质数的判断方法去筛选就可得出结果.首先容易得出3,5,7,11;5,7,11,13;在两位数中,按照上面的方法可得出以下各组数:11,13,15,17,19;41,43,45,47,49;71,73,75,77,79;101,103,105,107,109;131,133,135,137,139;161,163,165,167,169;191,193,195,197,199;根据质数的判断方法可以得出两位数中还有11,13,17,19;101,103,107,109;191,193,197,199这三组符合条件.解:200以内另外五组这样的质数为:3,5,7,11;5,7,11,13;11,13,17,19;101,103,107,109;191,193,197,199归一问题归一问题是一类典型应用题.这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题.解答归一问题的方法,叫做归一法.归一问题可以分为两种:一种是求总量的,叫做正归一问题;另一种是求份数的,叫做反归一问题.归一问题在日常生活和生产中经常遇到.例1某纺织厂有32台织布机,10天可织布4万米,后来改进操作规程,每台织布机每天多织5米,照这样的速度生产,如果该纺织厂又增加同样的织布机4台,20天可织布多少万米?分析:要求20天织布多少米,必须先求出改进操作规程前每天每台织布机织多少米,然后求出改进操作规程后每天每台织布机织多少米,就是“单一量”.这样便容易求出20天织布多少米.解:(1)改革操作规程前,每天每台织布机织布40000÷32÷10=125(米)(2)改进操作规程后,每天每台织布机织布125+5=130(米)(3)(32+4)台织布机,20天可织布130×(32+4)×20=93600(米)=9.36(万米)综合算式(40000÷32÷10+5)×(32+4)×20=(125+5)×36×20=130×36×20=93600(米)=9.36(万米)答:36台织布机,20天可织布9.36万米.例2某工厂一个车间,原计划20人4天做1280个零件,刚要开始生产,又增加了新任务,在工作效率相同的情况下,需要15个人7天才能全部完成,问增加了多少个零件?分析:要求增加了多少个零件,只需先求出每人每天生产多少个零件,然后求出15个人7天生产的零件数,最后用它减去1280个零件就可得出所要求的问题.解:(1)每人每天生产的零件数1280÷20÷4=16(个)(2)15人7天生产的零件数16×15×7=1680(个)(3)增加的零件数1680-1280=400(个)综合算式(1280÷20÷4)×15×7-1280=16×15×7-1280=1680-1280=400(个)答:增加了400个零件.例3某农场收割麦子,计划18人每天6小时15天收割完,后来为了加快速度,实际每天增加了9人,并且工作时间增加了2小时,实际比原计划提前了几天完成这项任务?分析:这题工作总量没有发生变化,只是人数和时间发生了变化.首先先求出工作总量,再求出实际工作的天数,便可以求出提前的天数.解:设一人工作一小时为一“工时”.(1)工作总量为18×6×15=1620(工时)(2)(18+9)人工作的小时数1620÷(18+9)=60(小时)(3)实际工作的天数60÷(6+2)=7.5(天)(4)实际比原计划提前的天数15-7.5=7.5(天)综合算式15-18×6×15÷(18+9)÷(6+2)=15-1620÷27÷8=15-7.5=7.5(天)答:实际比原计划提前了7.5天.例4一项工程预计28天完成,先由20个人去做8天,完成了工程的分析:要想求出需要增加多少名工人,只需先求出完成全部工程所需的减去原有人数,即为增加的工人数.解:设一人工作一天为一“日工”(1)完成全部工程所需的工作总量(2)剩余工程所需的工作量(3)在20天里完成剩余工程需要的工人数480÷(28-8)=24(人)(4)增加的工人数24-20=4(人)综合列式=480÷20-20=24-20=4(人)答:还需要增加4名工人.例5有一只闹钟和一只手表,已知闹钟走1小时,手表要多走30秒,又已知在1小时的标准时间里,闹钟少走30秒,问这只手表的时间准不准?每小时相差多少?分析:初看起来,手表比闹钟快30秒,闹钟比标准时间慢30秒,一快一慢都是30秒,刚好抵消.这是错误的,因为手表多走30秒是手表上的30秒,闹钟比标准时间少走30秒是闹钟上的30秒,手表比闹钟走得快,因此手表走30秒的时间比闹钟走30秒的时间短,两者无法抵消的.解这个问题的关键是先要计算在1小时(3600秒)的标准时间里闹钟走了多少秒,在这段时间里手表走了多少秒?与1小时(3600秒)的标准时间比较就可得出手表的误差.解:(1)标准时间走3600秒时,闹钟走了3600-30=3570(秒)(2)闹钟走3600秒时,手表走了3600+30=3630(秒)(3)闹钟走1秒时,手表走了3630÷3600=121÷120(秒)(4)标准1小时(闹钟走3570秒时),手表走了121÷120×3570=121×3570÷120=3599.75(秒)(5)手表比标准1小时慢3600-3599.75=0.25(秒)综合列式3600-(3600+30)÷3600×(3600-30)=3600-3630÷3600×3570=3600-3599.75=0.25(秒)答:这只手表每小时慢0.25秒.还原问题从问题的最后结果出发,运用加与减、乘与除的互逆关系,一步一步进行逆推,即遇加用减,遇减用加,遇乘用除,遇除用乘,最后求出问题的解,这种解题的方法通常叫做还原法,或逆推法,这类应用题通常叫做还原问题.例1某数加上2,乘以5,除以11,再减去8,结果是1,求这个数.分析:采用还原法思考,题中最后的结果是1,1是一个数减去8得到的,在没减去8之前的数是8+1=9,9又是一个数除以11得到的,在没除以11之前的数是9×11=99,而99又是一个数乘以5得到的,在没乘以5之前的数是99÷5=19.8,19.8就是某数加上2得到的,因此在没加2之前这个数为19.8-2=17.8.解(1)没减去8之前的数8+1=9(2)没除以11之前的数9×11=99(3)没乘以5之前的数99÷5=19.8(4)没加上2之前,某数19.8-2=17.8综合算式(1+8)×11÷5-2=17.8答:这个数是17.8.平均数在日常生产和生活中,通过求平均数来说明问题的例子很多.例如,农民根据平均亩产量看出产量的高低;学校根据同一年级的同一次考试各班的平均分数,比较出各班的差异;等等.因此,学会求平均数是很有必要的.几个数的和,再用它们的个数去除,就得到这几个数的平均数.与平均数有关的问题叫做平均数问题.解答平均数问题的基本公式是平均数=总数÷总份数总份数=总数÷平均数总数=平均数×总份数例1小宁在期末考试时,语文、数学、英语三科平均分数是93分,语文、数学平均90.5分,数学、英语平均97分.问他的三科成绩各是多少?分析:已知三科的平均分数是93分,那么这三科的总分数为93×3=279分,由语文、数学平均90.5分,则知这两科的总分数为90.5×2=181分,用三科的总分数减去这两科的总分数279-181=98分,即为英语的分数;同样,再由数学、英语平均97分,知道这两科的总分数为97×2=194分,用三科的总分数减去这两科的总分数279-194=85分,即为语文的分数;最后用三科的总分数减去语文、英语的分数就得到数学的分数.解:(1)这三科的总分数93×3=279(分)(2)语文、数学的总分数90.5×2=181(分)(3)英语的分数279-181=98(分)(4)数学、英语的总分数97×2=194(分)(5)语文的分数279-194=85(分)(6)数学的分数279-98-85=96(分)答:小宁的语文是85分,数学是96分,英语是98分.例2一个气象站每天早晨测量室外温度,现已知某星期一至星期日这七天的平均温度是25℃,并且知道星期一、三的温度相同,它们比星期二高3.5℃,星期二、四的温度相同,它们比星期五低1℃,星期六、日的温度相同,它们比星期五高2℃,问这七天的温度分别是多少?分析:由已知我们可以看出有四天的温度与星期五的温度有关,星期一、三两天的温度比星期二高3.5℃,星期二的温度比星期五低1℃,由此可知,星期一、三的温度比星期五的温度高3.5-1=2.5℃,这样七天中有六天与星期五的温度有关,把星期五的温度作为基准数,这六天的温度比星期五的温度共高2.5×2-1×2+2×2=7℃,再用这七天的总度数减去7℃,就是星期五的温度的7倍,这样星期五的温度可以求出,从而问题便可以解决.解:(1)七天的总度数25×7=175(℃)(2)六天比星期五共高的度数(3.5-1)×2-1×2+2×2=7(℃)(3)星期五的度数(175-7)÷7=24(℃)(4)星期一、三的度数24+3.5-1=26.5(℃)(5)星期二、四的度数24-1=23(℃)(6)星期六、日的度数24+2=26(℃)答:星期一与星期三的温度是26.5℃,星期二与星期四的温度是23℃,星期五的温度是24℃,星期六与星期日的温度是26℃.例3甲、乙、丙三个学生各拿出相同的钱买相同的画片,买来之后,甲、乙两人都比丙各多买了9张画片,因此他俩分别给了丙0.6元,问每张画片多少钱?分析:三人拿出相同的钱买相同
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新疆乌鲁木齐市2024-2025学年高二上学期期末英语B试卷(无答案)
- 2024男方公司经营权离婚协议书3篇
- 2024琴行钢琴出租合同含钢琴租赁与品牌合作服务3篇
- 2024贴牌合作:家居用品定制生产合同协议3篇
- 2024计划内安全生产职责明确协议版B版
- 2024物品抵押企业经营贷款合同3篇
- 2024年小学安全工作总结范文
- 2024年车辆安全责任协议
- 2025年度不良资产证券化项目尽职调查与合规审查合同3篇
- 2024版过路顶管施工合同
- GB/T 2423.17-2024环境试验第2部分:试验方法试验Ka:盐雾
- 无脊椎动物课件-2024-2025学年人教版生物七年级上册
- 2024AI Agent行业研究报告
- 华为质量回溯(根因分析与纠正预防措施)模板
- GB/T 23587-2024淀粉制品质量通则
- 法人贷款免责说明范文
- 中国急性缺血性卒中诊治指南(2023)解读
- 2024-2029年盐酸咪达唑仑行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 南方的耕作制度
- 2024年成都温江兴蓉西城市运营集团有限公司招聘笔试冲刺题(带答案解析)
- 手术器械生锈的原因分析
评论
0/150
提交评论