函数定义域与值域经典类型总结练习题含答案_第1页
函数定义域与值域经典类型总结练习题含答案_第2页
函数定义域与值域经典类型总结练习题含答案_第3页
函数定义域与值域经典类型总结练习题含答案_第4页
函数定义域与值域经典类型总结练习题含答案_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

-<一>求函数定义域、值域方法和典型题归纳一、基础知识整合1.函数的定义:设集合A和B是非空数集,按照*一确定的对应关系f,使得集合A中任意一个数*,在集合B中都有唯一确定的数f(*)与之对应。则称f:为A到B的一个函数。2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f),②集A的取值范围。由这两个条件就决定了f(*)的取值范围③{y|y=f(*),*∈A}。3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:(1)自变量放在一起构成的集合,成为定义域。(2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。4.值域:是由定义域和对应关系(f)共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。(1)明白值域是在定义域A内求出函数值构成的集合:{y|y=f(*),*∈A}。(2)明白定义中集合B是包括值域,但是值域不一定为集合B。二、求函数定义域(一)求函数定义域的情形和方法总结已知函数解析式时:只需要使得函数表达式中的所有式子有意义。(1)常见情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。③表达式中出现指数时:当指数为0时,底数一定不能为0.④根号与分式结合,根号开偶次方在分母上时:根号下大于0.⑤表达式中出现指数函数形式时:底数和指数都含有*,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于1.f(x)log(x21))x注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。(2)求定义域时,尽量不要对函数解析式进行变形,以免发生变化。(形如:. z.-f(x) x2 )x练习1、求下列函数的定义域:⑴y x22x15x331、(1){x|x5或x3或x6}y1(x1)2x1(2){x|x0}⑶y1(2x1)04x211x1(3){x|2x2且x0,x1,x1}22.抽象函数(没有解析式的函数)解题的方法精髓是“换元法”,根据换元的思想,我们进行将括号为整体的换元思路解题,所以关键在于求括号整体的取值范围。总结为:(1)给出了定义域就是给出了所给式子中*的取值范围;(2)在同一个题中*不是同一个*;(3)只要对应关系f不变,括号的取值范围不变。(4)求抽象函数的定义域个关键在于求f(*)的取值范围,及括号的取值范围。1:已知f(*+1)的定义域为[-1,1],求f(2*-1)的定义域。解:∵f(*+1)的定义域为[-1,1];(及其中*的取值范围是[-1,1])0x12;(*+1的取值范围就是括号的取值范围)∴f(*)的定义域为[0,2];(f不变,括号的取值范围不变)∴f(2*-1)中∴1x32213∴f(2*-1)的定义域为x|x22. z.-练习2、设函数f(x)的定义域为[0,1] ,则函数f(x2)的定义域为_、[1,1];_______;函数f( x2)的定义域为___[4,9]_____;3、若函数 f(x1)的定义域为[2,3] ,则函数f(2x1)的定义域是[0,5];;函数f(12)的定义域为(,1][1,)。2x323.复合函数定义域复合函数形如:y f(g(x)),理解复合函数就是可以看作由几个我们熟悉的函数组成的函数,或是可以看作几个函数组成一个新的函数形式。若函数f(x)的定义域为(2,3),g(x) f(x1)f(x2),例2:求g(x)的定义域。分析:由题目可以看出g(*)是由y=*+1、y=*-2和y=f(*)三个函数复合起来的新函数。此时做加运算,所以只要求出f(*+1)和f(*-2)的定义域,再根据求函数定义域要所有式子同时满足,即只要求出f(*+1)和f(*-2)的定义域的交集即可。解:由f(*)的定义域为(-2,3),则f(*+1)的定义域为(-3,2),f(*-2)的定义域为(0,4);3x20x4,解得0<*<2所以,g(*)的定义域为(0,2).(一)求函数值域方法和情形总结1.直接观察法(利用函数图象)一般用于给出图象或是常见的函数的情形,根据图象来看出y值的取值范围。练习(1)yx22x3 x[1,2]求值域。2.配方法适用于二次函数型或是可以化解成二次函数型的函数,此时注意对称轴的位置,在定义域范围内(以a<0为例),此时对称轴的地方为最大值,定. z.-义域为内端点离对称轴最远的端点处有最小值;对称轴在定义域的两边则根据单调性来求值域。总结为三个要点:(1)含参数的二次型函数,首先判断是否为二次型,即讨论a;(2)a不为0时,讨论开口方向;(3)注意区间,即讨论对称轴。例1:求f(x)x24x6在[1,5]上的值域.解:配方: f(x)(x2)22f(*)的对称轴为*=2在[1,5]中间(端点5离*=2距离较远,此时为最大值)所以,f(*)的值域为[2,11].练习(2)yx22x3(xR)求值域。3.分式型(1)分离常量法:应用于分式型的函数,并且是自变量*的次数为1,或是可以看作整体为1的函数。具体操作:先将分母搬到分子的位子上去,观察与原分子的区别,不够什么就给什么,化为yad。bxc例2:求f(x)5x1的值域.4x25(4x2)1105x14457解:f(x)4x22(4x2)4x245由于分母不可能为0,则意思就是函数值不可能取到4,5即:函数f(*)的值域为{y|y4}.练习3x1⑶y x1求值域(3){y|y3}(2)利用x20来求函数值域:适用于函数表达式为分式形式,并且只. z.-出现x2形式,此时由于为平方形式大多时候*可以取到任意实数,显然用分离常量法是行不通,只有另想它法(有界变量法)。3x21例3:求函数f(x) x22 的值域.解:由于x22不等于0,可将原式化为(y3)x212y(由于x20)只需y3,则有所以,函数值域y1,3.2练习(4)y5x+9x4求值域2x21(3)方程根的判别式法:适用于分式形式,其中既出现变量*又出现x2混合,此时不能化为分离常量,也不能利用上述方法。对于其中定义域为R的情形,可以使用根的判别式法。x4:求函数yx21的值域解:由于函数的定义域为R,即x210原式可化为yx22xy0(由于*可以取到任意的实数,则也就说总有一个*会使得上述方程有实数根,即方程有根则判别式大于或等于0,注:这里只考虑有无根,并不考虑根为多少)所以,44y20所以,函数值域为y1,1. z.-练习:求值域1(5)y1x24.换元法通过换元将一个复杂的问题简单化更便于求函数值域,一般函数特征是函数解析式中含有根号形式,以及可将问题转换为我们熟悉的函数形式等问题。而换元法其主要是让我们明白一种动态的方法来学习的一种思路,注重换元思维的培养,并不是专一的去解答*类问题,应该多加平时练习。注:换元的时候应及时确定换元后的元的取值范围。例5:求函数f(x)2xx1的值域解:令tx1,t0,则xt21,带入原函数解析式中得因为,t015,所以,函数的值域为y8.练习:求值域(6)yx12x一.选择题(共10小题)1.(2007•河东区一模)若函数f(*)=的定义域为A,函数g(*)=的定义域为B,则使A∩B=∅的实数a的取值范围是()A.(﹣1,3)B.[﹣1,3]C.(﹣2,4)D.[﹣2,4]2.若函数f(*)的定义域是[﹣1,1],则函数f(*+1)的定义域是()A.[﹣1,1]B.[0,2]C.[﹣2,0]D.[0,1]3.(2010•重庆)函数的值域是()A.[0,+∞)B.[0,4]C.[0,4)D.(0,4)4.(2009•河东区二模)函数的值域是()A.(0,+∞)B.C.(0,2)D.(0,)5.已知函数y=*2+4*+5,*∈[﹣3,3)时的值域为().z.-A.(2,26)B.[1,26)C.(1,26)D.(1,26]6.函数y=在区间[3,4]上的值域是()A.[1,2]B.[3,4]C.[2,3]D.[1,6]7.函数f(*)=2+3*2﹣*3在区间[﹣2,2]上的值域为()A.[2,22]B.[6,22]C.[0,20]D.[6,24]8.函数的值域是()A.{y|y∈R且y≠1}B.{y|﹣4≤y<1}C.{y|y≠﹣4且D.Ry≠1}9.函数y=*2﹣2*(﹣1<*<2)的值域是()A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论