第三讲状态估计技术_第1页
第三讲状态估计技术_第2页
第三讲状态估计技术_第3页
第三讲状态估计技术_第4页
第三讲状态估计技术_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三讲状态估计技术第一页,共二十七页,2022年,8月28日一、数理统计相关知识回顾1.数学期望离散型随机变量的一切可能的取值xi与对应的概率Pi(=xi)之积的和称为该离散型随机变量的数学期望(设级数绝对收敛),记为E(x)。其含义实际上是随机变量的平均取值。它反映随机变量平均取值的大小。又称期望或均值。第二页,共二十七页,2022年,8月28日2.方差方差是各个数据与平均数之差的平方的平均数。在概率论和数理统计中,方差(英文Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度。在许多实际问题中,研究随机变量和均值之间的偏离程度有着很重要的意义。方差是实际值与期望值之差平方的期望值,通俗点讲,就是和中心偏离的程度。

D(X)=E{[X-E(X)]2}第三页,共二十七页,2022年,8月28日3.标准差标准差为方差的算术平方根,用S表示。标准差与方差不同的是,标准差和变量的计算单位相同,比方差清楚,因此很多时候我们分析的时候更多的使用的是标准差。第四页,共二十七页,2022年,8月28日4.协方差两个不同参数之间的方差就是协方差,协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。期望值分别为E(X)=μ与E(Y)=ν的两个实数随机变量X与Y之间的协方差定义为:

COV(X,Y)=E[(X-E(X))(Y-E(Y))]

第五页,共二十七页,2022年,8月28日直观上来看,协方差表示的是两个变量总体误差的方差,这与只表示一个变量误差的方差不同。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X与Y是统计独立的,那么二者之间的协方差就是0。第六页,共二十七页,2022年,8月28日换句话说,协方差就是用来衡量两个样本之间的相关性有多少,也就是一个样本的值的偏离程度,会对另外一个样本的值偏离产生多大的影响,协方差是可以用来计算相关系数的,相关系数P=Cov(a.b)/Sa*Sb,Cov(a.b)是协方差,Sa,Sb分别是样本标准差。第七页,共二十七页,2022年,8月28日5.相关系数也称为线性相关系数、皮氏积矩相关系数等,是衡量两个随机变量之间线性相关程度的指标。它由卡尔·皮尔森(KarlPearson)在1880年代提出,现已广泛地应用于科学的各个领域。两个变量的协方差除以他们的方差乘积的算术平方根等于这两个变量的线性相关系数第八页,共二十七页,2022年,8月28日6.白噪声与高斯白噪声白噪声是指功率谱密度在整个频域内均匀分布的噪声。所有频率具有相同能量的随机噪声称为白噪声。从我们耳朵的频率响应听起来它是非常明亮的“咝”声(每高一个八度,频率就升高一倍。因此高频率区的能量也显著增强)。高斯白噪声:如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。第九页,共二十七页,2022年,8月28日二、卡尔曼滤波卡尔曼全名RudolfEmilKalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《ANewApproachtoLinearFilteringandPredictionProblems》(线性滤波与预测问题的新方法)。第十页,共二十七页,2022年,8月28日简单来说,卡尔曼滤波器是一个“optimalrecursivedataprocessingalgorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。第十一页,共二十七页,2022年,8月28日卡尔曼滤波器的介绍其中5条公式是其核心内容。在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声,也就是这些偏差跟前后时间是没有关系的而且符合高斯分配。另外,我们在房间里放一个温度计,但是这个温度计也是不准确的,测量值会比实际值有偏差。我们也把这些偏差看成是高斯白噪声。第十二页,共二十七页,2022年,8月28日现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。第十三页,共二十七页,2022年,8月28日假如我们要估算k时刻的实际温度值。首先我们要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。第十四页,共二十七页,2022年,8月28日由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的协方差来判断。因为Kg2=52/(52+42),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23)=24.56度。可以看出,因为温度计的协方差比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。第十五页,共二十七页,2022年,8月28日现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:

((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。第十六页,共二十七页,2022年,8月28日就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的covariance。上面的Kg,就是卡尔曼增益(KalmanGain)。他可以随不同的时刻而改变他自己的值,是不是很神奇!第十七页,共二十七页,2022年,8月28日卡尔曼滤波器算法下面讨论真正工程系统上的卡尔曼。首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程来描述:

X(k)=AX(k-1)+BU(k)+W(k)

再加上系统的测量值:

Z(k)=HX(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H

是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声,他们的covariance

分别是Q,R(这里我们假设他们不随系统状态变化而变化)。第十八页,共二十七页,2022年,8月28日下面我们来用他们结合他们的协方差来估算系统的最优化输出(类似那个温度的例子)。首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=AX(k-1|k-1)+BU(k)………(1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。第十九页,共二十七页,2022年,8月28日到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的协方差还没更新。我们用P表示协方差:

P(k|k-1)=AP(k-1|k-1)A’+Q………(2)式(2)中,P(k|k-1)是X(k|k-1)对应的协方差,P(k-1|k-1)是X(k-1|k-1)对应的协方差,A’表示

A的转置矩阵,Q是系统过程的协方差。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。第二十页,共二十七页,2022年,8月28日现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):

X(k|k)=X(k|k-1)+Kg(k)(Z(k)-HX(k|k-1))(3)其中Kg为卡尔曼增益(KalmanGain):Kg(k)=P(k|k-1)H’/(HP(k|k-1)H’+R)…(4)第二十一页,共二十七页,2022年,8月28日到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。但是为了要使卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的协方差:

P(k|k)=(I-Kg(k)H)P(k|k-1)………(5)其中I为1的矩阵,对于单模型单测量,I=1。当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。这样,算法就可以自回归的运算下去。第二十二页,共二十七页,2022年,8月28日举例说明举一个非常简单的例子来说明卡尔曼滤波器的工作过程。根据前面的描述,我们把房间看成一个系统,然后对这个系统建模。我们所知道的这个房间的温度是跟前一时刻的温度相同的,所以A=1。没有控制量,所以U(k)=0。因此得出:

X(k|k-1)=X(k-1|k-1)………(6)式子(2)可以改成:

P(k|k-1)=P(k-1|k-1)+Q………(7)因为测量的值是温度计的,跟温度直接对应,所以H=1。式子3,4,5可以改成以下:

X(k|k)=X(k|k-1)+Kg(k)(Z(k)-X(k|k-1))……(8)

Kg(k)=P(k|k-1)/(P(k|k-1)+R)………(9)

P(k|k)=(1-Kg(k))P(k|k-1)………(10)第二十三页,共二十七页,2022年,8月28日现在我们模拟一组测量值作为输入。假设房间的真实温度为25度,我们模拟200个测量值,这些测量值的平均值为25度,但是加入了标准偏差为几度的高斯白噪声(在图中为蓝线)。为了令卡尔曼滤波器开始工作,我们需要告诉卡尔曼两个零时刻的初始值,是X(0|0)和P(0|0)。他们的值不用太在意,随便给一个就可以了,因为随着卡尔曼的工作,X会逐渐的收敛。但是对于P,一般不要取0,因为这样可能会令卡尔曼完全相信你给定的X(0|0)是系统最优的,从而使算法不能收敛。我们选择X(0|0)=1度,P(0|0)=10。第二十四页,共二十七页,2022年,8月28日该系统的真实温度为25度,图中用黑线表示。图中红线是卡尔曼滤波器输出的最优化结果(该结果在算法中设置了Q=1e-6,R=1e-1)。第二十五页,共二十七页,2022年,8月28日总结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论