河南省三门峡市灵宝第二高级中学2022-2023学年高一数学理期末试卷含解析_第1页
河南省三门峡市灵宝第二高级中学2022-2023学年高一数学理期末试卷含解析_第2页
河南省三门峡市灵宝第二高级中学2022-2023学年高一数学理期末试卷含解析_第3页
河南省三门峡市灵宝第二高级中学2022-2023学年高一数学理期末试卷含解析_第4页
河南省三门峡市灵宝第二高级中学2022-2023学年高一数学理期末试卷含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省三门峡市灵宝第二高级中学2022-2023学年高一数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数,则它(

)A.是最小正周期为的奇函数

B.是最小正周期为的偶函数C.是最小正周期为2的奇函数

D.是最小正周期为的非奇非偶函数

参考答案:A2.若非零平面向量,,满足,则A.,一定共线

B.,一定共线C.,一定共线

D.,,无确定位置关系参考答案:A略3.在中,若,则的形状是(

)A.等腰三角形

B.直角三角形C.等腰直角形

D.等腰三角形或直角三角形参考答案:D略4.在△ABC中,若,则△ABC是(

A.等腰三角形

B.直角三角形C.等腰直角三角形

D.等腰三角形或直角三角形参考答案:D5.若的值为(

)A.1

B.3

C.15

D.30参考答案:C6.圆(x﹣3)2+(y+2)2=1与圆(x﹣7)2+(y﹣1)2=36的位置关系是()A.外离 B.外切 C.相交 D.内切参考答案:D【考点】圆与圆的位置关系及其判定.【专题】计算题;方程思想;综合法;直线与圆.【分析】根据题意,算出两圆的圆心分别为C1(3,﹣2)、C2(7,1),得到|C1C2|=5即得圆心距等于两圆半径之差,从而得到两圆相内切.【解答】圆(x﹣3)2+(y+2)2=1的圆心为C1(3,﹣2),半径r=1同理可得圆(x﹣7)2+(y﹣1)2=36的圆心为C2(7,1),半径R=6∴|C1C2|==5,可得|C1C2|=R﹣r,两圆相内切故选:D.【点评】本题给出两圆方程,求它们的位置关系,着重考查了圆的方程、圆与圆的位置关系等知识,属于基础题.7.已知,那么角是()A.第一或第二象限角

B.第二或第三象限角C.第三或第四象限角

D.第一或第四象限角参考答案:C8.由确定的等差数列中,当时,序号等于

A.99

B.100

C.96

D.101参考答案:B略9.函数f(x)=+lg(1+x)的定义域是(

)A.(﹣∞,﹣1) B.(1,+∞) C.(﹣1,1)∪(1,+∞) D.(﹣∞,+∞)参考答案:C【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据题意,结合分式与对数函数的定义域,可得,解可得答案.【解答】解:根据题意,使f(x)=+lg(1+x)有意义,应满足,解可得(﹣1,1)∪(1,+∞);故选:C.【点评】本题考查函数的定义域,首先牢记常见的基本函数的定义域,如果涉及多个基本函数,取它们的交集即可.10.设方程2x+x+2=0和方程的根分别为p和q,若函数f(x)=(x+p)(x+q)+2,则()A.f(0)<f(2)<f(3)B.f(0)=f(2)<f(3)C.f(3)<f(2)=f(0)D.f(0)<f(3)<f(2)参考答案:B考点:对数函数图象与性质的综合应用;指数函数综合题.

专题:函数的性质及应用.分析:把两个方程分别看作指数函数与直线y=﹣x﹣2的交点B和对数函数与直线y=﹣x﹣2的交点A的横坐标分别为p和q,而指数函数与对数函数互为反函数则关于y=x对称,求出AB的中点坐标得到p+q=﹣2.然后把函数f(x)化简后得到一个二次函数,对称轴为直线x=﹣=1,所以得到f(2)=f(0),再根据二次函数的增减性得到f(2)和f(0)都小于f(3)得到答案.解答:解:方程2x+x+2=0和方程log2x+x+2=0可以分别看作方程方程2x=﹣x﹣2和方程log2x=﹣x﹣2,方程2x+x+2=0和方程log2x+x+2=0的根分别为p和q,即函数y=2x与函数y=﹣x﹣2的交点B横坐标为p;y=log2x与y=﹣x﹣2的交点C横坐标为q.由y=2x与y=log2x互为反函数且关于y=x对称,所以BC的中点A一定在直线y=x上,联立得.解得A点坐标为(﹣1,﹣1)根据中点坐标公式得到=﹣1,即p+q=﹣2,则f(x)=(x+p)(x+q)+2=x2+(p+q)x+pq+2为开口向上的抛物线,且对称轴为x=﹣=1,得到f(0)=f(2),且当x>1时,函数为增函数,所以f(3)>f(2),综上,f(3)>f(2)=f(0),故选B.点评:此题是一道综合题,考查学生灵活运用指数函数、对数函数的图象与性质,要求学生掌握反函数的性质,会利用二次函数的图象与性质解决实际问题,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11.若某圆锥的轴截面是面积为的等边三角形,则这个圆锥的侧面积是__________.参考答案:2π【分析】由轴截面面积求得轴截面边长,从而得圆锥的底面半径和母线长.【详解】设轴截面等边三角形边长为,则,,∴.故答案为.【点睛】本题考查圆锥的侧面积,掌握侧面积计算公式是解题基础.12.已知平行四边形,则=

参考答案:013.若直线过点(3,4),且平行于过点和的直线,则直线的方程为_____参考答案:【分析】先利用斜率公式求出直线的斜率,由直线与直线平行,得出直线的斜率,再利用点斜式可得出直线的方程。【详解】由于直线,则直线的斜率等于直线的斜率,又由于直线过点,所以直线的方程为,即。故答案为:。【点睛】本题考查斜率公式、两直线的位置关系以及直线方程,关键在于将两直线平行转化为斜率相等,并利用斜率公式求出直线的斜率,考查推理分析能力与计算能力,属于中等题。14.函数过定点______________.参考答案:略15.三个数,G,成等比数列.且>0,则

.参考答案:216._______________。参考答案:-1【分析】本题首先可根据同角三角函数关系式化简得出,然后根据两角差的正弦公式化简得出,最后根据二倍角公式以及三角函数诱导公式即可得出结果。【详解】,故答案为【点睛】本题考查根据三角函数相关公式进行化简求值,考查到的公式有、、以及,考查化归与转化思想,是中档题。17.已知不等式的解集为或,则实数a=__________.参考答案:6【分析】由题意可知,3为方程的两根,利用韦达定理即可求出a的值.【详解】由题意可知,3为方程两根,则,即.故答案为:6【点睛】本题主要考查一元二次不等式的解,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知非零向量满足,且.(1)求;

(2)当时,求向量与的夹角的值.参考答案:解:(1)因为,即,所以

(2)因为

又因为所以,又所以略19.规定[t]为不超过t的最大整数,例如[12.6]=12,[-3.5]=-4,对实数x,令f1(x)=[4x],g(x)=4x-[4x],进一步令f2(x)=f1(g(x)).(1)若x=,分别求f1(x)和f2(x);(2)若f1(x)=1,f2(x)=3同时满足,求x的取值范围.参考答案:(1)当x=时,4x=,∴f1(x)==1,g(x)=-=,∴f2(x)=f1[g(x)]=f1=[3]=3.(2)由f1(x)=[4x]=1,得g(x)=4x-1,于是f2(x)=f1(4x-1)=[16x-4]=3.∴∴≤x<.20.(本小题满分12分)已知sinα=,α∈(0,π),cosβ=,β是第三象限角,求cos(α-β)的值.

参考答案:解析:①当α∈[,π)时,且sinα=,得cosα=,又由cosβ=,β是第三象限角,得sinβ==.所以cos(α-β)=cosαcosβ+sinαsinβ=.②当α∈(0,)时,且sinα=,得cosα=,又由cosβ=,β是第三象限角,得sinβ=所以cos(α-β)=cosαcosβ+sinαsinβ=

点评:本题与例2的显著的不同点就是角α的范围不同.由于α∈(0,π),这样cosα的符号可正、可负,需讨论,教师引导学生运用分类讨论的思想,对角α进行分类讨论,从而培养学生思维的严密性和逻辑的条理性.教师强调分类时要不重不漏.略21.(13分)如图,在三棱柱ABC﹣A′B′C′中,CC′⊥底面ABC,∠ACB=90°,AC=BC=CC′=a,E是A′C′的中点,F是AB的中点.(1)求证:BC⊥平面ACC′A′;(2)求证:EF∥平面BCC′B′;(3)设二面角C′﹣AB﹣C的平面角为θ,求tanθ的值.参考答案:考点: 二面角的平面角及求法;直线与平面平行的判定;直线与平面垂直的判定.专题: 空间位置关系与距离;空间角.分析: (1)根据线面垂直的判定定理证明AC⊥BC,即可证明BC⊥平面ACC′A′;(2)根据线面平行的判定定理证明EF∥BG即可证明EF∥平面BCC′B′;(3)根据二面角的定义先求出二面角的平面角,结合三角形的边角关系即可求tanθ的值.解答: (1)证明:∵CC′⊥底面ABC,∴CC′⊥BC∵∠ACB=90°,∴AC⊥BC,又AC∩CC′=C,∴BC⊥平面ACC′A.(2)证明:取B′C′的中点G,连接EG、BG,又E是A′C′的中点,则EG∥A′B′且等于A′B′的一半.ABCEFG∵F是AB中点,∴BF∥A′B′且等于A′B′的一半,∴EG与BF平行且相等.∴四边形EGBF是平行四边形,∴EF∥BG,又EF?平面BCC′B′,BG?平面BCC′B′,∴EF∥平面BCC′B′(3)连接FC、FC′.∵AC=BC,F是AB中点,∴CF⊥AB,又∵CC′⊥底面ABC,∴CC′⊥AB,∴AB⊥平面CFC′,∴C′F⊥AB,∴∠C′FC为二面角C′﹣AB﹣C的平面角,即θ=∠C′FC,在Rt△ABC中,∠ACB=90°,AC=BC=a,F是AB中点,∴CF=,又△C′FC是直角三角形,且∠C′CF=90°,CC′=a,∴tanθ=tan∠C′FC=.点评: 本题主要考查线面平行和垂直的判定,以及二面角的求解,要求熟练掌握相应的判定定理以及,利用向量法求解二面角的大小.22.已知函数f(x)=sin2x+sinxcosx﹣2.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)的单调增区间.参考答案:考点:三角函数中的恒等变换应用;正弦函数的图象.专题:三角函数的图像与性质.分析:(Ⅰ)由三角函数中的恒等变换应用化简函数解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论