版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1第四单元三角形第1课时角、相交线和平行线(含命题)有关概念
中考考点清单考点1线段、直线、射线考点2角及角平分线考点3相交线考点4平行线性质及判定考点5命题第四单元三角形三角形初中中考复习总结计划总结计划2常考类型剖析类型一相交线中角的计算类型二平行线的性质
第四单元三角形三角形初中中考复习总结计划总结计划在骨科医院实习的这段时间里,在今后的工作中我会更加不断努力地学习上进,不断提高自身的专业技术水平,从而使自己的理论知识及操作技能更上一个台阶,以便能更好的服务于患者,在此分享心得。下面是美文网小编为大家收集整理的骨科医院实习心得,欢迎大家阅读。骨科医院实习心得篇1实习内容:骨科手术一般护理;石膏固定护理;外固定支架护理;牵引护理;关节镜术护理;全髋和人工股骨置换术护理;游离足趾移植再造手指术护理;游离皮瓣移植术护理;骨髓炎化脓性关节炎术护理;断肢(指)再植术护理;皮肤牵引;臂丛神经损伤、多组神经移位术护理;正中神经松解术(腕管综合征)护理;扶助病人变换体位法;心肺复苏;卧床病人更换床单;引流管护理;褥疮护理;抽搐护理;骨科康复训练规范;休克护理;气管切开护理;分级护理;瘫痪护理;重建钢板治疗骨盆、髋臼骨折的护理;高热病人护理;负压引流球、中心负压引流;备皮;使用微波、红外线;昏迷护理。个人总结:“众里寻他千百度,蓦然回首,那人却在灯火阑珊处”,通过在骨科的实习,我对骨科的一些基本知识有了更深的认识和了解,对许多临床上的骨科病及护理知识有了更好的掌握。实习期间,我严3
1.直线公理:过两点有且只有一条直线.2.线段公理:过两点的所有连线中,①最短.3.线段的中点:如图①,点B在线段AC上,且把线段AC分成相等的两条线段AB与AC,这时B点叫做线段AC的中点,即AB=BC=AC.
线段图①返回目录考点1线段、直线、射线第四单元三角形三角形初中中考复习总结计划总结计划4返回目录
1.角的概念:一条射线绕它的端点从一个位置旋转到另一位置时所成的图形叫做角.如图①.图①第四单元三角形三角形初中中考复习总结计划总结计划5返回目录
2.角平分线的概念及其定理(1)概念:以一个角的顶点为端点的一条射线,如果把这个角分成两个②的角,这条射线叫做该角的角平分线;如图②,若OC平分∠AOB,则∠AOC=③=∠AOB.(2)定理:角平分线上的点到角两边的距离④;如图②,若OC平分∠AOB,点P在OC上,则PM⊥OA,PN⊥OB,则PM=PN.图②温馨提示◆到角两边距离相等的点在角的平分线上.相等∠BOC相等第四单元三角形三角形初中中考复习总结计划总结计划6返回目录
3.角的分类分类锐角直角钝角平角周角度数0°<α<90°α=90°⑤_α=180°α=360°90°<α<180°(1)分类
(2)周角、平角、直角之间的关系和度数1周角=2平角=4直角=360°;1平角=2直角=180°,1直角=90°;1°=60′,1′=60″,1′=()°,1″=()′.考点2角及角平分线第四单元三角形三角形初中中考复习总结计划总结计划7返回目录
4.补角和余角平角直角(1)补角的定义:如果两个角的和等于一个⑥(即等于180°),这两个角互为补角,或者说其中一个是另一个的补角.(2)余角的定义:如果两个角的和等于一个⑦(即等于90°),这两个角互为余角,或者说其中一个是另一个的余角.(3)补角、余角的性质:同角或等角的补角相等,同角或等角的余角相等.第四单元三角形三角形初中中考复习总结计划总结计划8返回目录
1.两相交直线所成的角相等180°图③(1)对顶角和邻补角对顶角:一个角的两边分别是另一个角两边的反向延长线,如图③,∠1与∠3,∠2与∠4都是对顶角.对顶角的性质:对顶角⑧.邻补角:两个角有一个公共顶点和一条公共边,另一边互为反向延长线.如图③,∠1与∠2,∠1与∠4,∠2与∠3,∠3与∠4都是邻补角.邻补角的和为⑨.考点3相交线第四单元三角形三角形初中中考复习总结计划总结计划9
2.垂线及其性质直角垂直垂线垂足直角垂线段的长度最短(1)垂线:两条直线相交所成的四个角中,如果有一个角是⑭,我们就说这两条直线⑮,其中一条直线叫做另一条直线的⑯,两条直线的交点叫做垂足.(2)垂线段:过直线外一点,作已知直线的垂线,该点与⑰之间线段.(3)点到直线的距·离:从直线外一点到这条直线的⑱.(4)垂线的基本性质:过一点有且只有一条直线垂直于已知直线;垂线段的性质:垂线段⑲.例题链接第四单元三角形三角形初中中考复习总结计划总结计划10
(2)三线八角(如图④)同位角:∠1与∠5,∠2与⑩,∠4与⑪,∠3与∠7.内错角:∠2与⑫,∠3与∠5.(3)同旁内角:∠3与∠8,∠2与⑬.∠8∠6∠8∠5图④例题链接第四单元三角形三角形初中中考复习总结计划总结计划平行线1、定义:在同一平面内,不相交的两条直线叫做平行线。
2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3、平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。三角形初中中考复习总结计划总结计划12
2.平行线的性质(1)两直线平行,同位角⑳; (2)两直线平行,内错角
;(3)两直线平行,同旁内角
;(4)过直线外一点有且只有一条直线与这条直线平行;(5)两条平行线的所有公垂线都相等.相等相等互补例题链接考点4平行线性质及判定(高频考点)
第四单元三角形三角形初中中考复习总结计划总结计划13返回目录
3.平行线的判定相等相等互补(1)同位角
,两直线平行;(2)内错角
两直线平行;(3)同旁内角
,两直线平行;(4)平行于同一条直线的两条直线平行;(5)在同一平面内垂直于同一直线的两直线平行.第四单元三角形三角形初中中考复习总结计划总结计划1.命题的概念:
判断一件事情的句子,叫做命题。命题必须是一个完整的句子;
这个句子必须对某件事情做出肯定或者否定的判断。两者缺一不可。2.命题的组成:
每个命是由题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。命题常写成“如果……,那么……”的形式。或“若……,则……”等形式。三角形初中中考复习总结计划总结计划真命题和假命题:
命题是一个判断,这个判断可能是正确的,也可以是错误的。由此可以把命题分成真命题和假命题。真命题就是:
如果题设成立,那么结论一定成立的命题。
假命题就是:
如果题设成立时,不能保证结论总是成立的命题。三角形初中中考复习总结计划总结计划1616返回考点
类型一相交线中角的计算(重点)例1题图C【解析】∵射线OC平分∠DOB,∠COB=35°,∴∠DOB=2∠COB=2×35°=70°.∴∠AOD=180°-∠DOB=110°.【点评与拓展】相交线中角的计算,常常需要借助邻补角,对顶角,角平分线,平行线的性质、判定以及三角形的内、外角和定理等知识点,联合一起解决问题.突破方法是:正确理解、掌握上述概念、定理.例1(’13大连)如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35°B.70°C.110°D.145°第四单元三角形三角形初中中考复习总结计划总结计划1717返回考点
变式题1(’13南通)如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于
度.变式题1图【解析】∵OE⊥AB,∴∠EOA=90°,又∠AOC=∠BOD=20°,∴∠COE=90°-20°=70°.70第四单元三角形三角形初中中考复习总结计划总结计划1818返回考点
类型二平行线的性质(重点)【解析】∵AB∥CD,∴∠BAC+∠C=180°,∴∠C=180°-∠BAC=60°,∵AC∥DF∴∠CDF=∠C=60°.例2题图A例2(’13黄冈)如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=()A.60°B.120°C.150°D.180°第四单元三角形三角形初中中考复习总结计划总结计划1919返回考点
【思维方式】(1)解决平行线性质问题,通常可以利用“F型”、“Z型”、“H型”等基本模型找准同位角或内错角或同旁内角.(2)利用平行线的性质求角,常见的思路为:①先根据平行线的性质求得与未知角互补或相等的角,再利用互补或相等关系,求未知的角;②先求得与未知角互补或相等的角,再利用平行线的性质求未知角的大小.第四单元三角形三角形初中中考复习总结计划总结计划2020返回考点
变式题2(’13成都)如图,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD=
度.变式题2图【解析】∵AB∥CD∴∠BCD=∠B=30°.∵CD平分∠ACD,∴∠ACD=2∠BCD=2×30°=60°.60第四单元三角形三角形初中中考复习总结计划总结计划例1.已知:如图5,AB∥CD,求证:∠B+∠D=∠BED.ABEDC(图5)证明:过点E作EF∥AB,∴∠B=∠1(两直线平行,内错角相等).∵AB∥CD(已知),又∵EF∥AB(已作),∴EF∥CD(平行于同一直线的两条直线互相平行).∴∠D=∠2(两直线平行,内错角相等).
又∵∠BED=∠1+∠2,∴∠BED=∠B+∠D(等量代换).12F三角形初中中考复习总结计划总结计划/变式1.已知:如图6,AB∥CD,求证:∠BED=360°-(∠B+∠D).ABECD(图6)12F证明:过点E作EF∥AB,∴∠B+∠1=180°(两直线平行,同旁内角互补).∵AB∥CD(已知),
EF∥AB(已作),∴EF∥CD(平行于同一直线的两条直线互相平行).∴∠D+∠2=180°(两直线平行,同旁内角互补).∴∠B+∠1+∠D+∠2=180°+180°(等式的性质).
又∵∠BED=∠1+∠2,∴∠B+∠D+∠BED=360°(等量代换).∴∠BED=360°-(∠B+∠D)(等式的性质).三角形初中中考复习总结计划总结计划23第2课时三角形的基本概念与性质
中考考点清单考点1三角形的分类考点2三角形的基本性质考点3三角形中的重要线段常考类型剖析类型一三角形的三边关系类型二三角形的内角和定理类型三三角形的中位线第四单元三角形三角形初中中考复习总结计划总结计划24考点1三角形的分类
锐角钝角1.按边分2.按角分返回目录第四单元三角形三角形初中中考复习总结计划总结计划25
1.三角形的三边关系图①如图①,我们知道“连接两点的所有连线中,线段最短”,因此有:AC+CB>AB,BA+AC>BC,AB+BC>AC.由此可见,三角形三边之间有如下关系:三角形任意两边之和③第三边.大于例题链接考点2三角形的基本性质第四单元三角形三角形初中中考复习总结计划总结计划26
(1)三角形内角和性质:三角形的内角和等于④
.(2)三角形一个外角等于与它不相邻的两内角⑤
;一个外角大于任何一个与它不相邻的内角.如图②,∠ACD=∠A+∠B,∠ACD>∠B,∠ACD>∠A.2.三角形内角和性质及内外角关系图②180°和返回目录第四单元三角形三角形初中中考复习总结计划总结计划27
1.三角形的角平分线图③三角形的角平分线的描述方式,如图③所示:(1)AD是△ABC的角平分线;(2)AD平分∠BAC交BC于点D;(3)∠1=∠2=∠BAC,即∠BAC=2∠1=2∠2.返回目录考点3三角形中的重要线段第四单元三角形三角形初中中考复习总结计划总结计划28
图④2.三角形的中线的描述方式,如图④所示:(1)AM是△ABC的中线;(2)AM是△ABC中BC边上的中线;(3)点M是BC边的中点;(4)BM=CM.返回目录第四单元三角形三角形初中中考复习总结计划总结计划29
4.三角形的中位线(1)定义:连接三角形⑥的线段叫做三角形的中位线.(2)中位线的性质:三角形的中位线⑦第三边,并且等于⑧.如图⑤,△ABC三边中点分别为D、E、F,则(1)DFBC,DE
AC,EFAB.(2)S△ADF=S△DBE
=S△FEC=S△EFD=S△ABC.图⑤两边中点第三边的一半平行返回目录第四单元三角形三角形初中中考复习总结计划总结计划3030
类型一三角形的三边关系(重点)【解析】①3、6、8,3+6>8,能构成;②3、6、9,3+6=9,不能构成;③3、8、9,3+8>9,能构成;④6、8、9,6+8>9,能构成.故最多能组成三个三角形.例1(’13南通)有2cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A.1B.2C.3D.4C返回目录第四单元三角形三角形初中中考复习总结计划总结计划31
3.三角形的高线从三角形的顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高.
温馨提示
◆三角形的高所处位置与其形状有关,如图:锐角三角形直角三角形钝角三角形返回目录第四单元三角形三角形初中中考复习总结计划总结计划32【点评与拓展】(1)三边关系定理:①三角形两边之和大于第三边;②三角形的两边之差小于第三边;实际操作时,只要验证:两条较短的线段长度之和大于第三条线段的长度即可.(2)三角形的三边关系一般和不等式组联系,甚至涉及分类讨论的思想方法.例如求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.
返回目录第四单元三角形三角形初中中考复习总结计划总结计划33
变式题1(’13海南)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3D.1<x<3【解析】∵已知三角形两边的长分别是1和2,∴第三边x的范围是2-1<x<1+2即1<x<3.D返回目录第四单元三角形三角形初中中考复习总结计划总结计划3434
类型二三角形内角和定理(重难点)【解析】∵AB=AC,∠A=90°,∴∠ACB=∠B=45°,∵∠EDF=90°,∠E=30°,∴∠F=90°-∠E=60°,∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE-∠F=∠BCE+∠ACB-∠F=45°+40°-60°=25°.例2题图例2(’13威海)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BEC=40°,则∠CDF=
.25°返回目录三角形初中中考复习总结计划总结计划3535
变式题2(’12湖州)如图,在△ABC中,D、E分别是AB、AC上的点,点F在BC的延长线上,DE∥BC,∠A=46°,∠1=52°,则∠2=
度.变式题2图【解析】∵∠DEC是△ADE的外角,∠A=46°,∠1=52°,∴∠DEC=∠A+∠1=46°+52°=98°,∵DE∥BC,∴∠2=∠DEC=98°98返回目录第四单元三角形三角形初中中考复习总结计划总结计划3636
类型三三角形的中位线【解析】因为三角形的中位线平行于第三边并且等于第三边的一半,所以BC=2EF=4cm.例3题图例3(’11湘西州)如图,在△ABC中,E、F分别是AB、AC的中点,若中位线=2cm,则BC边的长是()A.1cmB.2cmC.3cmD.4cm【点评与拓展】本题考查了三角形中位线的性质,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半.D返回目录第四单元三角形三角形初中中考复习总结计划总结计划3737
变式题3(’13昆明)如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为()A.50°B.60°C.70°D.80°变式题3图【解析】由题意得,∠ADE=180°-∠A-∠ADE=70°,∵点D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,∴∠C=∠AED=70°.C返回目录第四单元三角形三角形初中中考复习总结计划总结计划38第3课时全等三角形
中考考点清单考点1全等三角形及其性质考点2三角形全等的判定常考类型剖析类型全等三角形的判定第四单元三角形三角形初中中考复习总结计划总结计划39考点1全等三角形及其性质返回目录
1.定义:能完全重合的两个三角形叫做全等三角形.2.性质:(1)全等三角形的对应边①,对应角②.(2)全等三角形的对应线段(角平分线、中线、高线、中位线)相等,对应周长③,对应面积④.相等相等相等相等第四单元三角形三角形初中中考复习总结计划总结计划40
1.三角形全等的判定方法图①(1)SSS:⑤对应相等的两个三角形全等;如图①,在△ABC与△DEF中,已知AB=DE,AC=DF,BC=EF,则△ABC≌△DEF.(2)⑥:两边和它们的夹角对应相等的两个三角形全等;如图①,在△ABC与△DEF中,已知AB=DE,∠A=∠D,AC=DF,则△ABC≌△AEF.SAS三边返回目录考点2三角形全等的判定第四单元三角形三角形初中中考复习总结计划总结计划41
(3)⑦:两角和它们的夹边对应相等的两个三角形全等;如图①,在△ABC与△DEF中,已知∠A=∠D,AB=DE,∠B=∠E,则△ABC≌△DEF.(4)AAS:两角和其中一个角的对边对应相等的两个三角形全等;如图①,在△ABC与△DEF中,已知∠A=∠D,∠B=∠E,AC=DF,则△ABC≌△DEF.(5)HL:在两个直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等;如图②,在Rt△ABC与Rt△DEF中,已知∠B=∠E=90°,AC=DF,BC=EF,则Rt△ABC≌Rt△DEF.图②ASA返回目录第四单元三角形三角形初中中考复习总结计划总结计划42温馨提示◆利用SSA和AAA两种是不能判定全等三角形的.(1)如图③,在△ABC与△DEF中,已知AB=DE,∠B=∠E,AC=DF,但△ABC与△DEF不全等;(2)如图④,在△ABC与△DEF中,已知∠A=∠D,∠C=∠F,∠B=∠E,但△ABC与△DEF不全等.图③图④返回目录第四单元三角形三角形初中中考复习总结计划总结计划432.三角形全等的证明思路返回目录
第四单元三角形三角形初中中考复习总结计划总结计划44
温馨提示
◆全等三角形的应用主要有:证明线段、角相等;求线段的长度、角的度数、三角形面积;测量不可直接测量的距离等.返回目录第四单元三角形三角形初中中考复习总结计划总结计划4545
类型全等三角形的判定(重点)【思路分析】本题需先找出全等的三角形,再利用判定定理给予证明.其中,除△ADE≌△ABC外,还有三对三角形全等.证明时注意已证明过的结论,可作为未证明的条件加以利用.例(’13仙桃)如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以证明.返回目录第四单元三角形三角形初中中考复习总结计划总结计划46解:△AEM≌△ACN,△BMF≌△DNF,△ABN≌△ADM.(三对任写两对即可)(1)选择△AEM≌△ACN,理由如下:∵△ADE≌△ABC,∴AE=AC,∠E=∠C,∠EAD=∠CAB,∴∠EAM=∠CAN,在△AEM和△ACN中,∵∴△AEM≌△CAN(SAS).
返回目录第四单元三角形三角形初中中考复习总结计划总结计划47(2)选择△ABN≌△ADM.,理由如下:∵△ADE≌△ABC,∴AB=AD,∠B=∠D,∵∠BAN=∠DAM,∴△ABN≌△ADM(SAS).(3)选择△BMF≌△DNF,理由如下:∵△ABN≌△ADM,∴AM=AN,∴BM=DN,∵∠B=∠D,∠BFM=∠DFN,∴△BMF≌△DNF(AAS).
返回目录第四单元三角形三角形初中中考复习总结计划总结计划48【点评与拓展】(1)要证三角形全等,至少要有一组“边”的条件,所以一般情况下,我们一般先找对应边;(2)要证直角三角形全等,通常先考虑直角边、斜边定理(HL);(3)在有一组对应边相等的前提下,我们通常找任意两组对应角相等即可;在有两组对应边分别相等的前提下,可以求第三组对应边相等,或者求两组对应边的夹角相等,注意必须是夹角;若有三组对应边分别相等,则可以直接根据边边边(SSS)求解.
返回目录第四单元三角形三角形初中中考复习总结计划总结计划4949
变式题(’12贵阳)如图,已知点A、D、C、F在同一直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F
B.∠B=∠EC.BC∥EF
D.∠A=∠EDF【解析】∵AB=DE,BC=EF,若要使△ABC≌△DEF,则应有∠B=∠E.B变式题图返回目录第四单元三角形三角形初中中考复习总结计划总结计划50第4课时特殊三角形
中考考点清单考点1等腰三角形考点2等边三角形考点3直角三角形常考类型剖析类型一等腰三角形类型二直角三角形第四单元三角形三角形初中中考复习总结计划总结计划51
1.性质(1)等腰三角形是①图形,对称轴是顶角平分线所在直线;(2)等腰三角形的顶角平分线也是底边上的中线和底边上的高(“三线合一”);(3)等腰三角形的两底角②.(1)有两边相等的三角形是等腰三角形;(2)有两个角相等的三角形是等腰三角形.2.判定轴对称相等返回目录考点1等腰三角形第四单元三角形三角形初中中考复习总结计划总结计划52考点2等边三角形
1.性质(1)有三条边相等的三角形是等边三角形;(2)有两个角等于④的三角形是等边三角形;(3)有一个角是60°的⑤三角形是等边三角形.2.判定60°等腰(1)等边三角形的三个内角均相等且等于③;(2)等边三角形底边上的中线,底边上的高线和所对顶角的角平分线互相重合.60°返回目录第四单元三角形三角形初中中考复习总结计划总结计划53
1.勾股定理即其逆定理(1)勾股定理直角三角形两直角边a,b的平方和,等于斜边c的平方,即a2+b2=c2.(2)勾股定理的逆定理如果三角形三边长为a,b,c,且满足下面的关系:a2+b2=c2,那么这个三角形是直角三角形.如图,在△ABC中,已知∠A,∠B,∠C的对边分别为a,b,c,若△ABC为直角三角形且∠C=90°,则a2+b2=c2,若a2+b2=c2,则△ABC为直角三角形,且∠C=90°.返回目录考点3直角三角形第四单元三角形三角形初中中考复习总结计划总结计划542.直角三角形的性质与判定性质(1)两锐角之和等于⑥;(2)斜边上的中线等于斜边的⑦;(3)30°角所对的直角边等于斜边的⑧;(4)勾股定理,若直角三角形的两直角边分别为a、b,斜边为c,则有a2+b2=c2;(5)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于⑨;(6)直角三角形的面积等于两直角边乘积的⑩_判定(1)有一个角为90°的三角形是直角三角形;(2)利用勾股定理的逆定理进行判定90°一半30°一半一半
返回目录第四单元三角形三角形初中中考复习总结计划总结计划55
类型一等腰三角形的性质与判定(重点)【解析】∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.例1(’13枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20B.12C.14D.13例1题图C返回目录第四单元三角形三角形初中中考复习总结计划总结计划56【点评与拓展】本题考查等腰三角形的“三线合一”及三角形的中位线性质,已知等腰三角形“三线”中的任一条时(顶角平分线或底边上的中线或底边上的高),常需要运用“三线合一”的性质;若已知图形中两个或两个以上的“中点”时,常注意运用三角形中位线的性质.
返回目录第四单元三角形三角形初中中考复习总结计划总结计划5757
变式题1(’14原创)已知,如图,在△ABC中,AD平分∠BAC,且△ABD与△ADC的面积相等,求证:△ABC是等腰三角形.解:过D作DE⊥AB于E,DF⊥AC于F.∵AD平分∠BAC,∴DE=DF.∵S△ABD
=AB×DE,S△ADC=
AC×DF,又∵△ABD与△ADC面积相等,∴AB=AC,即△ABC是等腰三角形.变式题1图变式题1解图返回目录第四单元三角形三角形初中中考复习总结计划总结计划58
类型二直角三角形的相关计算(重点)【解析】在Rt△ABC中,AC=6,BC=8,∴AB=
,D是AB边上的中点,根据直角三角形斜边上的中线等于斜边的一半可得CD=AB=×10=5.例2题图例2(’14原创)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB上的中点,连接CD,则CD的长是()A.20B.10C.5D.C返回目录第四单元三角形三角形初中中考复习总结计划总结计划59【点评与拓展】本题考查了勾股定理、直角三角形的性质.在直角三角形中,斜边上的中线等于斜边的一半,题目的综合性很好,且难度不大,解决有关直角三角形的问题时,熟练掌握勾股定理及直角三角形的性质是解题的关键.
返回目录第四单元三角形三角形初中中考复习总结计划总结计划6060
变式题2(’14原创)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是
.【解析】根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:,过C作CD⊥AB,交AB于点D,又S△ABC=AC·BC=AB·CD,∴CD=(AC·BC)÷AB=(9×12)÷15=,则点C到AB的距离是.返回目录第四单元三角形三角形初中中考复习总结计划总结计划61第5课时相似三角形
中考考点清单考点1比例线段及其性质考点2相似三角形考点3相似多边形及位似常考类型剖析类型相似三角形的判定及性质第四单元三角形三角形初中中考复习总结计划总结计划62考点1等腰三角形返回目录
1.两条线段的比:如果选用同一长度单位量得两条线段a与b的长度分别为m,n,那么把长度的比叫做这两条线段的比.线段a与线段b的比记作a∶b或.其中a叫比的前项,b叫比的后项.2.成比例线段:对于四条线段a、b、c、d,如果线段a与b的比等于线段c与d的比,即=,那么这四条线段叫做成比例线段,简称比例线段.第四单元三角形三角形初中中考复习总结计划总结计划63
3.比例的基本性质bc返回目录第四单元三角形三角形初中中考复习总结计划总结计划64
归纳总结
◆平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等. ◆平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段④.
成比例4.黄金分割:点C在线段AB上,若AC2=AB·BC,则点C为AB的⑤.若点C为线段AB的黄金分割点,则或AC≈0.618AB.黄金分割点返回目录第四单元三角形三角形初中中考复习总结计划总结计划65
1.相似三角形的性质(1)两角对应相等的两个三角形相似;(2)两边对成比例且角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似.2.相似三角形的判定(1)相似三角形的对应角⑥;(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;(3)相似三角形的周长比等于⑦,面积比等于⑧.相等相似比相似比的平方返回目录考点2相似三角形第四单元三角形三角形初中中考复习总结计划总结计划66
归纳总结
返回目录第四单元三角形三角形初中中考复习总结计划总结计划67
归纳总结 ◆几种基本相似三角形图形
返回目录第四单元三角形三角形初中中考复习总结计划总结计划68考点3相似多边形及位似
1.相似多边形的概念及性质概念:我们把对应角相等,并且对应边成比例的 两个多边形叫做相似多边形.性质:(1)相似多边形的对应边⑨; (2)相似多边形的对应角⑩; (3)相似多边形周长的比⑪相似比,相 似多边形面积的比等于⑫.成比例相等等于相似比的平方返回目录第四单元三角形三角形初中中考复习总结计划总结计划69
1.位似(1)位似变换:取一点O,把图形上任意一点P对应到射线OP(或它的反向延长线)上一点P′,使得线段OP′与OP的比等于常数k(k>0),点O对应到它自身,这种变换叫做位似变换,点O叫做位似中心.(2)位似的图形:一个图形经过位似变换得到的图形叫作原图形位似的图形.(3)位似的性质:两个位似图形上每一对对应点都与位似中心在一条直线上,并且新图形与原图形上对应点到位似中心的距离之比等于位似比返回目录第四单元三角形三角形初中中考复习总结计划总结计划70
类型相似三角形的判定及性质【思路分析】(1)已知∠ACD=∠B,△ACD与△ABC有一个公共角∠A,根据有两个角对应相等的两个三角形相似可证得△ACD∽△ABC;(2)由(1)中证得的相似,利用相似三角形的性质:“相似三角形的对应边成比例”,列出式子可求得AC的长.例(’14原创)如图,D是△ABC的边AB上的一点,连接CD,若AD=2,BD=4,∠ACD=∠B.(1)求证:△ABC∽△ACD;(2)求AC的长.例题图返回目录第四单元三角形三角形初中中考复习总结计划总结计划71解:(1)在△ABC和△ACD中,∵∠B=∠ACD,∠A=∠A,∴△ABC∽△ACD.(两组角对应相等,两三角形相似)(2)由(1)可知△ABC∽△ACD,∴,(两三角形相似,对应边成比例)∴AC2=AD·AB=AD·(AD+BD)=2×6=12,∴AC=.返回目录
第四单元三角形三角形初中中考复习总结计划总结计划72【归纳总结】相似三角形在解决线段的长有关计算问题中作用重大,常常是将未知线段与已知线段放于两个三角形中,并证明其相似,利用线段比例列方程求解.返回目录
第四单元三角形三角形初中中考复习总结计划总结计划73
变式题(’13巴中)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=,AF=,求AE的长.变式题图返回目录第四单元三角形三角形初中中考复习总结计划总结计划7474
【思路点拨】(1)要证△ADF∽△DEC,在这里要用“有两角对应相等的两个三角形相似”这种判定方法,根据本题图形特点只要能证出∠ADF=∠CED和∠AFD=∠BCD即可;(2)根据△ADF∽△DEC可得比例式,进一步可求出DE的长度,然后在Rt△ADE中利用勾股定理求AE的长度.返回目录第四单元三角形三角形初中中考复习总结计划总结计划75解:(1)四边形∵ABCD是平行四边形,∴AD∥BC,AB∥CD.∵AD∥BC,∴∠ADE=∠CED.∵AB∥CD,∴∠B+∠BCD=180°,又∵∠AFE+∠AFD=180°,∠AFE=∠B,∴∠AFD=∠BCD.∴△ADF∽△DEC.
返回目录第四单元三角形三角形初中中考复习总结计划总结计划76(2)∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD.∵AB=8,∴CD=8,∵△ADF∽△DEC,∴.∵AD=,AF=,∴,∴DE=12.∵AD∥BC,AE⊥BC,∴AE⊥AD,∵在Rt△ADE中,AE2+AD2=DE2,∴ .
返回目录第四单元三角形三角形初中中考复习总结计划总结计划77第6课时解直角三角形的应用中考考点清单考点1锐角三角形考点2解直角三角形的边角关系考点3解直角三角形的实际应用常考类型剖析类型一解直角三角形的边角关系类型二解直角三角形的实际应用
第四单元三角形三角形初中中考复习总结计划总结计划781.三角函数的概念如图,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,正弦sinA=;余弦cosA=①______;正切tanA=②______.考点1锐角三角函数
返回目录第四单元三角形三角形初中中考复习总结计划总结计划792.特殊角三角函数值
角度三角函数30°45°60°sinαcosαtanα1返回目录第四单元三角形三角形初中中考复习总结计划总结计划80
考点2
解直角三角形的边角关系
已知条件图形解法一直角边和一锐角(a,∠A)∠B=90°-∠A,c=,
(或b=)
斜边和一锐角(c,∠A)∠B=90°-∠A,a=c·sinA,b=c·cosA(或b=)返回目录第四单元三角形三角形初中中考复习总结计划总结计划81
返回目录
两直角边(a,b)由
求∠A,∠B=90°-∠A一直角边和一锐角(a,∠A)由
求∠A,∠B=90°-∠A返回目录第四单元三角形三角形初中中考复习总结计划总结计划82
常考类型仰角、俯角在视线与水平线所成的锐角中,视线在水平线上方的角叫做仰角,视线在水平线下方的角叫做俯角坡度(坡比)、坡角坡面的铅直高度h和水平宽度l的比叫做坡度(坡比),用字母i表示;坡面与水平线的夹角α叫做坡角.i=tanɑ=考点3解直角三角形的实际应用(高频考点)返回目录第四单元三角形三角形初中中考复习总结计划总结计划83
常考类型方向角一般指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角)通常表达成北(南)偏东(西)+度,如图,A点位于O点的北偏东30°方向,B点位于O点的南偏东60°方向,C点位于O点的北偏西45°方向(或西北方向)解题方法1.解直角三角形时,当所求元素不在直角三角形中时,应作辅助线构造直角三角形,或寻找已知直角三角形中的边角替代所要求的元素2.解实际问题的关键是构造几何模型,大多数问题都需要添加适当的辅助线,将问题转化为直角三角形中的边角计算问题.如:作等腰三角形底边上的高、梯形中过上底的两个顶点作梯形的高等3.注意题设中对精确度的要求,一般解直角三角形问题都要求最后结果取精确数返回目录第四单元三角形三角形初中中考复习总结计划总结计划84
类型一直角三角形的边角关系
例1(’12上海)
如图在Rt△ABC中,∠ACB=90°,D是边AB的中点,BE⊥CD,垂足为点E.己知AC=15.cosA=.(1)求线段CD的长;(2)求sin∠DBE的值.例1题图返回目录第四单元三角形三角形初中中考复习总结计划总结计划85
【思路分析】(1)利用锐角三角函数求出斜边AB的长,再依据CD=AB求解即可;(2)先利用三角函数求出BC,再由sin∠ABC=sin∠ECB得cos∠ECB=,结合BC求得EC、DE、DB,求解sin∠DBE.解:(1)在Rt△ABC中,因为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房地产合作协议合同范本
- 个人消费贷款合同协议书
- 统编版语文九年级上册 第六单元《丑奴儿-书博山道中壁》公开课一等奖创新教学设计
- 【四上】第六单元习作记一次游戏 +公开课一等奖创新教学设计
- 《电信KPI培训》课件
- 发酵型含乳饮料项目招商计划书
- 年产xx电缆接头项目建议书
- 曲拉板项目可行性研究报告
- 年产xxx洗地粉项目投资分析报告
- 年产xxx防爆斧项目可行性研究报告(项目建议书)
- 思想政治教育学原理课后答案
- 人教部编版八年级历史上册教学课件第五单元全套
- 新高考选科-专业解读课件
- 九种体质调理课件
- 一年级上学期期中家长会(语文老师)
- 口腔急诊处理课件
- 部编版五年级道德与法治上册第8课《美丽文字 民族瑰宝》优质课件
- 白鹭学情分析方案五年级语文
- 四川省建设工程量清单计价定额
- 农民工子弟校家校共育问题探究
- 很全的化妆基础知识课件
评论
0/150
提交评论