版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,为的零点,为图象的对称轴,且在区间上单调,则的最大值是()A. B. C. D.2.网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为()A.1 B. C.3 D.43.已知集合,集合,则A. B.或C. D.4.双曲线x2a2A.y=±2x B.y=±3x5.如图在一个的二面角的棱有两个点,线段分别在这个二面角的两个半平面内,且都垂直于棱,且,则的长为()A.4 B. C.2 D.6.函数的图象可能是()A. B. C. D.7.已知集合A={0,1},B={0,1,2},则满足A∪C=B的集合C的个数为()A.4 B.3 C.2 D.18.已知数列是公比为的正项等比数列,若、满足,则的最小值为()A. B. C. D.9.已知,则的大小关系是()A. B. C. D.10.某大学计算机学院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲从人工智能领域的语音识别、人脸识别,数据分析、机器学习、服务器开发五个方向展开研究,且每个方向均有研究生学习,其中刘泽同学学习人脸识别,则这6名研究生不同的分配方向共有()A.480种 B.360种 C.240种 D.120种11.已知集合,,若,则实数的值可以为()A. B. C. D.12.已知复数z1=3+4i,z2=a+i,且z1是实数,则实数a等于()A. B. C.- D.-二、填空题:本题共4小题,每小题5分,共20分。13.已知实数a,b,c满足,则的最小值是______.14.在中,内角的对边分别为,已知,则的面积为___________.15.已知的展开式中第项与第项的二项式系数相等,则__________.16.已知不等式组所表示的平面区域为,则区域的外接圆的面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角坐标系xOy中,已知椭圆C:(a>b>0)的离心率为.且经过点(1,),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C于D,E两点(其中D在x轴上方).(1)求椭圆C的标准方程;(2)若△AEF与△BDF的面积之比为1:7,求直线l的方程.18.(12分)在平面直角坐标系中,已知点,曲线:(为参数)以原点为极点,轴正半轴建立极坐标系,直线的极坐标方程为.(Ⅰ)判断点与直线的位置关系并说明理由;(Ⅱ)设直线与曲线的两个交点分别为,,求的值.19.(12分)已知函数.(1)求不等式的解集;(2)若函数的最大值为,且,求的最小值.20.(12分)已知函数.(1)当时,解不等式;(2)设不等式的解集为,若,求实数的取值范围.21.(12分)某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过度的部分按元/度收费,超过度但不超过度的部分按元/度收费,超过度的部分按元/度收费.(I)求某户居民用电费用(单位:元)关于月用电量(单位:度)的函数解析式;(Ⅱ)为了了解居民的用电情况,通过抽样,获得了今年1月份户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这户居民中,今年1月份用电费用不超过元的占,求,的值;(Ⅲ)在满足(Ⅱ)的条件下,若以这户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点代替,记为该居民用户1月份的用电费用,求的分布列和数学期望.22.(10分)已知椭圆的离心率为,且以原点O为圆心,椭圆C的长半轴长为半径的圆与直线相切.(1)求椭圆的标准方程;(2)已知动直线l过右焦点F,且与椭圆C交于A、B两点,已知Q点坐标为,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由题意可得,且,故有①,再根据,求得②,由①②可得的最大值,检验的这个值满足条件.【详解】解:函数,,为的零点,为图象的对称轴,,且,、,,即为奇数①.在,单调,,②.由①②可得的最大值为1.当时,由为图象的对称轴,可得,,故有,,满足为的零点,同时也满足满足在上单调,故为的最大值,故选:B.【点睛】本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题.2、A【解析】
采用数形结合,根据三视图可知该几何体为三棱锥,然后根据锥体体积公式,可得结果.【详解】根据三视图可知:该几何体为三棱锥如图该几何体为三棱锥,长度如上图所以所以所以故选:A【点睛】本题考查根据三视图求直观图的体积,熟悉常见图形的三视图:比如圆柱,圆锥,球,三棱锥等;对本题可以利用长方体,根据三视图删掉没有的点与线,属中档题.3、C【解析】
由可得,解得或,所以或,又,所以,故选C.4、A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:∵e=因为渐近线方程为y=±bax点睛:已知双曲线方程x2a25、A【解析】
由,两边平方后展开整理,即可求得,则的长可求.【详解】解:,,,,,,.,,故选:.【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.6、A【解析】
先判断函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【详解】函数的定义域为,,该函数为偶函数,排除B、D选项;当时,,排除C选项.故选:A.【点睛】本题考查根据函数的解析式辨别函数的图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,结合排除法得出结果,考查分析问题和解决问题的能力,属于中等题.7、A【解析】
由可确定集合中元素一定有的元素,然后列出满足题意的情况,得到答案.【详解】由可知集合中一定有元素2,所以符合要求的集合有,共4种情况,所以选A项.【点睛】考查集合并集运算,属于简单题.8、B【解析】
利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值.【详解】数列是公比为的正项等比数列,、满足,由等比数列的通项公式得,即,,可得,且、都是正整数,求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值.当且时,的最小值为.故选:B.【点睛】本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题.9、B【解析】
利用函数与函数互为反函数,可得,再利用对数运算性质比较a,c进而可得结论.【详解】依题意,函数与函数关于直线对称,则,即,又,所以,.故选:B.【点睛】本题主要考查对数、指数的大小比较,属于基础题.10、B【解析】
将人脸识别方向的人数分成:有人、有人两种情况进行分类讨论,结合捆绑计算出不同的分配方法数.【详解】当人脸识别方向有2人时,有种,当人脸识别方向有1人时,有种,∴共有360种.故选:B【点睛】本小题主要考查简单排列组合问题,考查分类讨论的数学思想方法,属于基础题.11、D【解析】
由题意可得,根据,即可得出,从而求出结果.【详解】,且,,∴的值可以为.故选:D.【点睛】考查描述法表示集合的定义,以及并集的定义及运算.12、A【解析】分析:计算,由z1,是实数得,从而得解.详解:复数z1=3+4i,z2=a+i,.所以z1,是实数,所以,即.故选A.点睛:本题主要考查了复数共轭的概念,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先分离出,应用基本不等式转化为关于c的二次函数,进而求出最小值.【详解】解:若取最小值,则异号,,根据题意得:,又由,即有,则,即的最小值为,故答案为:【点睛】本题考查了基本不等式以及二次函数配方求最值,属于中档题.14、【解析】
由余弦定理先算出c,再利用面积公式计算即可.【详解】由余弦定理,得,即,解得,故的面积.故答案为:【点睛】本题考查利用余弦定理求解三角形的面积,考查学生的计算能力,是一道基础题.15、【解析】
根据的展开式中第项与第项的二项式系数相等,得到,再利用组合数公式求解.【详解】因为的展开式中第项与第项的二项式系数相等,所以,即,所以,即,解得.故答案为:10【点睛】本题主要考查二项式的系数,还考查了运算求解的能力,属于基础题.16、【解析】
先作可行域,根据解三角形得外接圆半径,最后根据圆面积公式得结果.【详解】由题意作出区域,如图中阴影部分所示,易知,故,又,设的外接圆的半径为,则由正弦定理得,即,故所求外接圆的面积为.【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离、可行域面积、可行域外接圆等等,最后结合图形确定目标函数最值取法、值域范围.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2).【解析】
(1)利用离心率和椭圆经过的点建立方程组,求解即可.(2)把面积之比转化为纵坐标之间的关系,联立方程结合韦达定理可求.【详解】解:(1)设焦距为2c,由题意知:;解得,所以椭圆的方程为.(2)由(1)知:F(﹣1,0),设l:,D(,),E(,),<0<①,,,②;③;由①②得:,,代入③得:,又,故,因此,直线l的方程为.【点睛】本题主要考查椭圆方程的求解及椭圆中的面积问题,椭圆方程一般利用待定系数法,建立方程组进行求解,面积问题的合理转化是求解的关键,侧重考查数学运算的核心素养.18、(Ⅰ)点在直线上;见解析(Ⅱ)【解析】
(Ⅰ)直线:,即,所以直线的直角坐标方程为,因为,所以点在直线上;(Ⅱ)根据直线的参数方程中参数的几何意义可得.【详解】(Ⅰ)直线:,即,所以直线的直角坐标方程为,因为,所以点在直线上;(Ⅱ)直线的参数方程为(为参数),曲线的普通方程为,将直线的参数方程代入曲线的普通方程得,设两根为,,所以,,故与异号,所以,,所以.【点睛】本题考查在极坐标参数方程中方程互化,还考查了直线的参数方程中参数的几何意义,属于中档题.19、(1)(2)【解析】
(1)化简得到,分类解不等式得到答案.(2)的最大值,,利用均值不等式计算得到答案.【详解】(1)因为,故或或解得或,故不等式的解集为.(2)画出函数图像,根据图像可知的最大值.因为,所以,当且仅当时,等号成立,故的最小值是3.【点睛】本题考查了解不等式,均值不等式求最值,意在考查学生的计算能力和转化能力.20、(1)或;(2)【解析】
(1)使用零点分段法,讨论分段的取值范围,然后取它们的并集,可得结果.(2)利用等价转化的思想,可得不等式在恒成立,然后解出解集,根据集合间的包含关系,可得结果.【详解】(1)当时,原不等式可化为.①当时,则,所以;②当时,则,所以;⑧当时,则,所以.综上所述:当时,不等式的解集为或.(2)由,则,由题可知:在恒成立,所以,即,即,所以故所求实数的取值范围是.【点睛】本题考查零点分段求解含绝对值不等式,熟练使用分类讨论的方法,以及知识的交叉应用,同时掌握等价转化的思想,属中档题.21、(1);(2),;(3)见解析.【解析】试题分析:(1)根据题意分段表示出函数解析式;(2)将代入(1)中函数解析式可得,即,根据频率分布直方图可分别得到关于的方程,即可得;(3)取每段中点值作为代表的用电量,分别算出对应的费用值,对应得出每组电费的概率,即可得到的概率分布列,然后求出的期望.试题解析:(1)当时,;当当时,;当当时,,所以与之间的函数解析式为.(2)由(1)可知,当时,,则,结合频率分布直方图可知,∴,(3)由题意可知可取50,150,250,350,450,550,当时,,∴,当时,,∴,当时,,∴,当时,,∴,当时,,∴,当时,,∴,故的概率分布列为25751402203104100.10.20.30.20.150.05所以随机变量的数学期望22、(1);(2).【解析】
(1)根据椭圆的离心率为,得到,根据直线与圆的位置关系,得到原心到直线的距离等于半径,得到,从而求得,进而求得椭圆的方程;(2)分直线的斜率存在是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省江门市新会区崖南镇田边小学2024-2025学年五年级上学期11月期中语文试题
- 礼物筹备方案
- 天津行政职业能力模拟45
- 2014年05月10日下午广东省省直机关公务员面试真题
- 2010年3月11日海关面试真题
- 关于成立人工智能公司商业计划书
- 2007年山西省公务员面试真题
- 内蒙古行政职业能力模拟75
- 海南省行政职业能力测验真题2016年
- 心理健康教育谈话记录
- 2024年中国打印机市场探析:数字化浪潮智能引领打印机市场-18正式版
- 健康医疗数据平台患者信息共享与利用方案
- 一年级下册道德与法治《分享真快乐》课件【新部编版】
- 2.1.2 种子植物 课件-2024-2025学年人教版生物七年级上册
- 国际美容整形外科学会:2023年度全球美容整形手术年度调查报告(英文版)
- 甘肃省定西市2023-2024学年八年级上学期期中语文试题
- 2024年新北师大版七年级上册数学课件 3.1 第1课时 代数式
- 安徽干部教育在线2024年必修课考试答案
- 2024年全国职业院校技能大赛中职(数字产品检测与维护赛项)考试题库(含答案)
- 《滴水实验》(教学设计)-2023-2024学年四年级上册数学北师大版
- icu手册第一部分-常见病诊疗规范
评论
0/150
提交评论