第十二讲指数模型_第1页
第十二讲指数模型_第2页
第十二讲指数模型_第3页
第十二讲指数模型_第4页
第十二讲指数模型_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

投资学吉云副教授Telmail:jiyun@第十二讲指数模型Readings:Ch.8

(7thed.)大纲一、证券市场的单因素模型二、单指数模型三、估计单指数模型四、利用单指数模型构建最优投资组合3Copyright©byShantouUniversityBusinessSchool2023/2/6一、证券市场的单因素模型马科维茨模型的两大缺陷:1、该模型的重要输入值——证券协方差矩阵需要大量的估计值2、该模型对预测证券的风险溢价不能提供任何帮助,而这是确定有效边界的关键指数模型就是为了尽可能克服这两大缺陷而由Sharpe(1963)提出的2023/2/6Copyright©byShantouUniversityBusinessSchool4一、证券市场的单因素模型(续)我们已经知道,投资组合的确定是否成功,很大程度上取决于输入值的质量,这里主要是证券的预期收益率和协方差矩阵考虑利用50只股票构建风险投资组合,此时需要1325个估计值,如果利用100只股票,估计值需要5150个,如果利用3000只,估计值需要450万个除了估计值数量惊人,估计值的精确性对投资组合构建也有重大影响2023/2/6Copyright©byShantouUniversityBusinessSchool5一、证券市场的单因素模型(续)指数模型的思想源自于:尽管单个证券之间的协方差看似毫无规律,但我们可以想象,某些共同经济力量会对所有证券收益产生影响,比如:商业周期、利率变化、通胀率等,协方差就来自于这些共同因素因此,如果将这些共同因素识别出来,同时假设其他影响单个证券收益的因素互不相关,我们就可以大大简化投资分析过程2023/2/6Copyright©byShantouUniversityBusinessSchool6一、证券市场的单因素模型(续)根据这一思想,我们可将影响证券收益的不确定性因素分为两类2023/2/6Copyright©byShantouUniversityBusinessSchool7系统性因素公司特殊因素考虑APT的设定!一、证券市场的单因素模型(续)因此,任何证券的随机收益率都可以写成:式中,E(ri)表示期望收益率,m是影响所有公司的宏观经济变量,均值为0,标准差为σm,ei是只影响公司i的特殊因素,均值为0,标准差为σ(ei),m和ei相互独立,β表示公司i对于系统因素的敏感度2023/2/6Copyright©byShantouUniversityBusinessSchool8一、证券市场的单因素模型(续)容易得到2023/2/6Copyright©byShantouUniversityBusinessSchool9一、证券市场的单因素模型(续)可以看出,利用单因素模型刻画证券收益可以大大简化分析过程我们还将看到,在短时收益率服从正态分布的假设下,利用单因素模型得到的有效边界与马科维茨模型非常接近2023/2/6Copyright©byShantouUniversityBusinessSchool10二、单指数模型一种代表系统性因素的指标是市场指数(如:标准普尔500指数),原因在于市场指数可以反映所有证券的整体性波动,且容易观测,这样的模型称为单指数模型现在我们可以利用历史数据来估计相应输入值,以备构建最优投资组合2023/2/6Copyright©byShantouUniversityBusinessSchool11二、单指数模型(续)回归方程如下:M表示市场指数,市场的超额收益率为RM=rM-rf,标准差为σM,证券的超额收益率为Ri=ri-rf,这两个都是可以观测的历史数据我们需要的估计值都可以通过该回归方法得到2023/2/6Copyright©byShantouUniversityBusinessSchool12二、单指数模型(续)容易看出期望超额收益率(风险溢价)为该式将证券风险溢价分为两部分:市场溢价和非市场溢价思考:非市场溢价的含义?2023/2/6Copyright©byShantouUniversityBusinessSchool13注意:这不是一个理论,而是经验事实!二、单指数模型(续)我们只要得到以下估计值,就可以得到相关证券的期望收益率和协方差矩阵,进而得到有效前沿2023/2/6Copyright©byShantouUniversityBusinessSchool14二、单指数模型(续)可以计算,对于50只股票的投资组合,单指数模型只需要152个估计值,而对于3000只股票则只需要9002个估计值,的确大大简化了分析此外,指数模型有助于证券分析师的专业化分工,不要求所有分析师具有跨行业背景(估计协方差!)2023/2/6Copyright©byShantouUniversityBusinessSchool15二、单指数模型(续)单指数模型的问题:1、限制了证券收益不确定的结构,简单地将其来源分为宏观和微观两类(这样可能会忽略行业因素!)2、对残差项相关系数为0的设定会导致最优组合的偏差2023/2/6Copyright©byShantouUniversityBusinessSchool16三、估计单指数模型我们已经知道指数模型的原理,现在利用举例简要介绍估计单指数模型的过程下面的分析涉及6家美国公司:惠普、戴尔、塔吉特、沃尔玛、英国石油和皇家荷兰壳牌公司样本选自这6家公司股票收益率的月度观测数据,市场指数为标准普尔500,无风险收益率以国库券月收益率为准2023/2/6Copyright©byShantouUniversityBusinessSchool17三、估计单指数模型(续)2023/2/6Copyright©byShantouUniversityBusinessSchool18三、估计单指数模型(续)据此数据估计惠普公司的证券特征线(SCL)2023/2/6Copyright©byShantouUniversityBusinessSchool19三、估计单指数模型(续)2023/2/6Copyright©byShantouUniversityBusinessSchool20惠普-标普500散点图三、估计单指数模型(续)2023/2/6Copyright©byShantouUniversityBusinessSchool21惠普公司SCL估计结果三、估计单指数模型(续)2023/2/6Copyright©byShantouUniversityBusinessSchool22各板块超额收益率变动三、估计单指数模型(续)2023/2/6Copyright©byShantouUniversityBusinessSchool23指数模型其他估价值四、利用单指数模型构建最优投资组合单指数模型的最重要优点在于:对宏观经济分析和证券分析提供了一个框架马科维茨模型要求对每个证券的风险溢价进行估计,这一估计并未区分宏观因素和微观因素,因此,不同着眼于单只证券的分析师可能得出不一致甚至相互矛盾的宏观预测指数模型则可以解决这一问题,宏观因素和微观因素的分析可以在两个层次展开2023/2/6Copyright©byShantouUniversityBusinessSchool24四、利用单指数模型构建最优投资组合(续)这一框架设定了一个有用的分析层次:1、估计市场风险溢价E(RM)和市场风险2(RM)2、估计所有证券i和残差方差σ2(ei)3、计算各证券来自市场风险的期望收益iE(RM)4、基于证券分析得到2023/2/6Copyright©byShantouUniversityBusinessSchool25四、利用单指数模型构建最优投资组合(续)α与证券分析回到期望收益表达式该式表明,通过宏观经济分析,分析师可以确定期望收益中市场溢价的部分但还有一部分需要通过针对i的证券分析得到,这就是非市场溢价部分2023/2/6Copyright©byShantouUniversityBusinessSchool26四、利用单指数模型构建最优投资组合(续)举例:如果经过统计分析知道了某一证券A的β值,我们就可以将其与另一个具有相近β值的证券B进行比较,如果前者经过证券分析发现有更高的α值,那么这显然是更好的投资对象,因为其A和B的系统风险相同,但超额收益更高2023/2/6Copyright©byShantouUniversityBusinessSchool27四、利用单指数模型构建最优投资组合(续)由于系统风险系数i对大家而言是一个公开信息,证券分析师的主要贡献便在于:基于其对宏观因素和特殊证券的理解找到>0的投资机会,即:市场错误定价带来的套利机会思考:正和有效市场假说?2023/2/6Copyright©byShantouUniversityBusinessSchool28四、利用单指数模型构建最优投资组合(续)现在开始分析最优投资组合问题假设某投资者经过证券分析将投资范围限定在n只股票上(积极投资?)为了克服整个投资组合分散化不够的问题,他可以引入市场组合(消极投资!),可将其理解为第n+1个资产2023/2/6Copyright©byShantouUniversityBusinessSchool29四、利用单指数模型构建最优投资组合(续)为了构造最优投资组合,需要估计值:市场风险溢价、市场标准差n组β系数估计值、n只股票残差、n个α值可以看出,基于以上估计值我们可以容易地按照马科维茨的程序完成投资组合分析但事实上不必如此麻烦,单指数模型允许我们更直接地得到相关结果2023/2/6Copyright©byShantouUniversityBusinessSchool30四、利用单指数模型构建最优投资组合(续)组合期望收益为组合标准差为2023/2/6Copyright©byShantouUniversityBusinessSchool31四、利用单指数模型构建最优投资组合(续)可以证明(Treynor&Black,1973),通过最大化夏普比率,可以得到,最优风险投资组合由两个组合组成:积极组合A和市场指数组合M,其权重为2023/2/6Copyright©byShantouUniversityBusinessSchool32四、利用单指数模型构建最优投资组合(续)由于组合的夏普比率满足如下关系最大化就相当于最大化下式2023/2/6Copyright©byShantouUniversityBusinessSchool33四、利用单指数模型构建最优投资组合(续)结果是积极组合由以下单个证券权重组成2023/2/6Copyright©byShantouUniversityBusinessSchool34如果证券分析表明i<0,则wi<0,即:持有空头!不管i>0还是i<0,都偏离了最优市场组合四、利用单指数模型构建最优投资组合(续)总结一下,最优组合可按以下程序进行:1、计算积极组合中的证券权重2、计算积极组合的α值和残差方差2023/2/6Copyright©byShantouUniversityBusinessSchool35四、利用单指数模型构建最优投资组合(续)3、计算积极组合的β系数4、计算积极组合在整个投资组合中的权重2023/2/6Copyright©byShantouUniversityBusinessSchool36四、利用单指数模型构建最优投资组合(续)最终,最优风险投资组合的权重为:可以计算该组合的风险溢价和方差为2023/2/6Copyright©byShantouUniversityBusinessSchool37四、利用单指数模型构建最优投资组合(续)举例(pp174-175):模型应用(Excel)2023/2/6Copyright©byShantouUniversityBusiness

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论