版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章关联5.1单电子近似的理论基础5.2费米液体理论5.3强关联体系多电子体系(AfterBorn-Oppenheimer绝热近似):5.1单电子近似的理论基础关联:电子-电子相互作用弱:单电子近似,电子平均场1.Hartree方程(1928)连乘积形式:按变分原理,的选取E达到极小正交归一条件单电子方程Hartree方程中的势:第二项是全部电子在r处形成的势,与相抵消第三项是须扣除的自作用,与j有关,但如取r为计算原点:所以对凝胶模型,Hartree方程:相互作用→没有相互作用电子+正电荷背景→自由电子气3.Hartree-Fock方程(1930)Hartree方程不满足Pauli不相容原理电子:费米子单电子波函数f:→N电子体系的总波函数:
不涉及自旋-轨道耦合时:N电子体系能量期待值:1.第二项j,j'可以相等,自相互作用2.自相互作用严格相消(通过第二,三项)3.第三项为交换项,同自旋电子通过变分:么正变换:单电子方程:与Hartree方程的差别:第三项对全体电子,第四项新增,交换作用项。求和只涉及与j态自旋平行的j’态,是电子服从Fermi统计的反映。4.Koopmann定理(1934)单电子轨道能量等于N电子体系从第j个轨道上取走一个电子并保持N-1个电子状态不不变的总能变化值。定性讨论:假设Fermihole:与某电子自旋相同的其余邻近电子在围绕该电子形成总量为1的密度亏欠域energyasafunctionoftheoneelectrondensity,nuclear-electronattraction,electron-electronrepulsionThomas-FermiapproximationforthekineticenergySlaterapproximationfortheexchangeenergy6.密度泛函理论(Densityfunctionaltheory)
(1)Thomas-Fermi-DiracModel(2)TheHohenberg-KohnTheorem
propertiesareuniquelydeterminedbytheground-stateelectron
In1964,HohenbergandKohnprovedthatmolecularenergy,wavefunction
andallothermolecularelectronic
probabilitydensity
namely,Phys.Rev.136,13864(1964)
.”Densityfunctionaltheory(DFT)attemptstoandotherground-statemolecularproperties
fromtheground-stateelectrondensity
“Formoleculeswitha
nondegenerate
groundstate,theground-state
calculate
Nowweneedtoprovethattheground-stateelectronprobabilitydensitythenumberofelectrons.
theexternalpotential(exceptforanarbitraryadditiveconstant)
a)Sincedeterminesthenumberofelectrons.b)Toseethatdeterminestheexternalpotential,wesupposethatthisisfalseandthattherearetwoexternalpotentialsand(differingbymorethanaconstant)thateachgiveriseto
thesameground-stateelectrondensity.determinestheexactground-statewavefunctionandenergyoftheexactground-statewavefunctionandenergyofLetSinceanddifferbymorethanaconstant,andmustbe
differentfunctions.Proof:Assumethusthuswhichcontradictsthegiveninformation.function,theexactground-statewavefunction
stateenergy
foragivenHamiltonianIfthegroundstateisnondegenerate,thenthereisonlyonenormalizedthatgivestheexactgroundLetbeafunctionofthespatialcoordinatesofelectroni,thenUsingtheaboveresult,wegetSimilarly,ifwegothroughthesamereasoning
withaandbinterchanged,wegetByhypothesis,thetwodifferentwavefunctionsgivethesameelectron.Puttingandaddingtheabovetwoinequalitiesdensity:
yieldpotentialscouldproducethesameground-stateelectrondensitymustbefalse.
energy)
andalsodeterminesthenumberofelectrons.Thisresultisfalse,soourinitialassumptionthattwodifferentexternalpotential(towithinanadditiveconstantthat
simplyaffectsthezerolevel
ofHence,the
ground-stateelectronprobabilitydensity
determinestheexternalprobabilitydensityandotherproperties”emphasizesthedependenceoftheexternalpotential
differs
fordifferentmolecules.“Forsystemswithanondegenerategroundstate,theground-stateelectrondeterminestheground-statewavefunctionandenergy,,whichHowever,thefunctionalsareunknown.isalsowrittenasThefunctionalindependentoftheexternalonispotential.withHamiltonian.AccordingtothevariationtheoremLetususethewavefunctionasatrialvariationfunctionforthe
moleculeSincethelefthandsideofthisinequalitycanberewrittenasOnegetsstates.Subsequently,Levyprovedthetheoremsfordegenerategroundstates.
HohenbergandKohnprovedtheirtheoremsonlyfornondegenerateground(4)TheKohn-Shammethod
Ifweknowtheground-stateelectrondensity
molecularpropertiesfromfunction.,theHohenberg-Kohntheoremtellsusthatitispossibleinprincipletocalculatealltheground-state,withouthavingtofindthemolecularwave
1965,KohnandShamdevisedapracticalmethodforfinding
andforfinding
from.[Phys.Rev.,140,A1133(1965)].Theirmethod
iscapable,inprinciple,ofyieldingexactresults,butbecausetheequationsof
theKohn-Sham(KS)methodcontainanunknownfunctionalthatmustbeapproximated,theKSformationofDFTyield
approximateresults.沈吕九electronsthateachexperiencethesameexternalpotential
theground-stateelectronprobabilitydensity
equaltotheexactofthemoleculeweareinterestedin:.KohnandShamconsideredafictitiousreferencesystemsofnnoninteractingthatmakesofthereferencesystemSincetheelectronsdonot
interactwithoneanotherinthereferencesystem,theHamiltonianofthereferencesystemiswhereistheone-electronKohn-ShamHamiltonian.
RememberthatWiththeabovedefinitions,
canbewrittenasDefinetheexchange-correlationenergyfunctionalbyNowwehaveside
are
easytoevaluatefromgetagoodapproximationto
totheground-stateenergy.
Thefourthquantity
accurately.
ThekeytoaccurateKSDFT
calculationofmolecular
propertiesisto
Thefirstthreetermsontherightisarelativelysmallterm,butisnoteasytoevaluate
andtheymakethe
maincontributionsThusbecomes.Nowweneedexplicitequationstofindtheground-stateelectrondensity.sameelectrondensityasthatinthegroundstateofthemolecule:isreadilyprovedthatSincethefictitioussystemofnoninteractingelectronsisdefinedtohavethe,it(6)Variousapproximatefunctionals
DFcalculations.Thefunctionalandacorrelation-energyfunctionalAmongvariousCommonlyusedandPW91(PerdewandWang’s1991functional)Lee-Yang-Parr(LYP)functionalareusedinmolecularapproximations,gradient-corrected
exchangeandcorrelationenergyfunctionalsarethemostaccurate.PW86(PerdewandWang’s1986functional)B88(Becke’s1988functional)P86(the
Perdew1986correlationfunctional)
(7)NowadaysKSDFTmethodsaregenerallybelievedtobebetterthantheHFmethod,andinmostcasestheyareevenbetterthanMP2
iswrittenasthesumofanexchange-energyfunctional
XLocalexchangeApproximatedensityfunctionaltheoriesforexchangeandcorrelationX:
LocalexchangefunctionalofthehomogeneouselectrongasLDALocalexchange+localcorrelationGGALocalexchange+localcorrelation+gradientcorrections3rdGenerationoffunctionalsLDA:Localexchangefunctional+localcorrelationfunctionalofthehomogeneouselectrongasGGA:SameasLDA+“non-local”gradientcorrectionstoexchangeandcorrelation3rdGenerationoffunctionals:SameasGGA+instilationof“exact-exchange”and+2ndderivativesofthedensitycorrectionsTermsinDensityFunctionalsr Localdensityrs Seitzradius=(3/4pr)1/3kF Fermiwavenumber=(3p2r)1/3t Densitygradient=|gradr|/2fksrz Spinpolarization=(rup-rdown)/rf Spinscalingfactor=[(1+z)2/3+(1-z)2/3]/2ks
Thomas-Fermiscreeningwavenumber =(4kF/pa0)1/2s Anotherdensitygradient=|gradr|/2kFrJ.Chem.Phys.,100,1290(1994);PRL77,3865(1996).LocalDensityApproximationLocalSpinDensityApproximationLocalSpinDensityCorrelationFunctionalNotforthefaintofheart:GeneralizedGradientApproximationFunctionalsTheNobelPrizeinChemistry1998“forhisdevelopmentofthedensity-functionaltheory"WalterKohn(1923-)5.2费米液体理论费米体系费米温度:均匀的无相互作用的三维系统,费米温度:费米简并系统:费米子系统的温度通常运运低于费米温度
室温下金属中的传导电子费米温度给出了系统中元激发存在与否的标度在费米温度以下,系统的性质由数目有限的低激发态决定。有相互作用和无相互作用的简并费米子系统中,低激发态的性质具有较强的对应性。2.费米液体金属中电子通常是可迁移的,称为电子气,电子动能:电子势能:在高密度下,电子动能为主,自由电子气模型是较好的近似。在低密度下,电子之间的势能或关联变得越来越重要,电子可能由于这种关联作用进入液相甚至晶相。较强关联下,电子系统被称为电子液体或费米液体或Luttinger液体(1D)相互作用:(1)单电子能级分布变化(势的变化);(2)电子散射导致某一态上有限寿命(驰豫时间)3.朗道费米液体理论单电子图象不是一个正确的出发点,但只要把电子改成准粒子或准电子,就能描述费米液体。准粒子遵从费米统计,准粒子数守恒,因而费米面包含的体积不发生变化。假设激发态用动量表示朗道费米液体理论的适用条件:(1).必须有可明确定义的费米面存在(2).准粒子有足够长的寿命FermiLiquidTheorySimplePictureforFermiLiquid朗道费米液体理论是处理相互作用费米子体系的唯象理论。在相互作用不是很强时,理论对三维液体正确。二维情况下,多大程度上成立不知道。一维情况下,不成立。luttinger液体一维:低能激发为自旋为1/2的电中性自旋子和无自旋荷电为的波色子的激发。非费米液体行为:与费米液体理论预言相偏离的性质THEPHYSICS
OFLUTTINGERLIQUIDSFERMISURFACEHASONLYTWOPOINTSfailureofLandau´sFermiliquidpictureELECTRONSFORMAHARMONICCHAINATLOWENERGIES
Coulomb+PauliinteractionTHELUTTINGERLIQUID:INTERACTINGSYSTEMOF1DELECTRONSATLOWENERGIEScollectiveexcitationsarevibrationalmodesREMARKABLEPROPERTIESAbsenceofelectron-likequasi-particles(onlycollectivebosonicexcitations)Spin-chargeseparation(spinandchargearedecoupledandpropagatewithdifferentvelocities)AbsenceofjumpdiscontinuityinthemomentumdistributionatPower-lawbehaviorofvariouscorrelationfunctionsandtransportquantities.Theexponentdependsontheelectron-electroninteractionOUTLINEWhatisaFermiliquid,andwhytheFermiliquidconceptbreaksin1DTheTomonaga-LuttingermodelTheTL-HamiltoniananditsbosonizationDiagonalizationBosonicfieldsandelectronoperatorsLocaldensityofstatesTunnelingintoaLuttingerliquidLuttingerliquidwithasingleimpurityPhysicalrealizationsofLuttingerliquidsLITERATURE
K.FlensbergLecturenotesontheone-dimensionalelectrongasandthetheoryofLuttingerliquids
J.vonDelftandH.SchoellerBosonizationforbeginnersrefermionizationforexperts,cond-mat/9805275J.VoitOne-dimensionalFermiliquids,Rep.Prog.Phys.58,977(1995)H.J.Schulz,G.CunibertiandP.PieriFermiliquidsandLuttingerliquids,cond-mat/9807366SHORTLYABOUTFERMILIQUIDSLandau1957-1959Alsocollectiveexcitationsoccur(e.g.zerosound)atfiniteenergiesLowenergyexcitationsofasystemofinteractingparticlesdescribedintermsof``quasi-particles``(single-particleexcitations)Keypoint:quasi-particleshavesamequantumnumbersasthecorrespondingnon-interactingsystem(adiabaticcontinuity)StartfromappropriatenoninteractingsystemRenormalizationofasetofparameters(e.g.effectivemass)FERMILIQUIDSIIPauliexclusionprinciple
onlystateswithinkTaroundFermisphereavailablequasiparticlestatesnearFermispherescatteronlyweaklyQUASI-PARTICLEPICTUREISAPPLICABLEIN3DEffectofCoulombinteractionistoinduceafinitelife-timet3DFERMILIQUIDSIIIcollectiveexcitations(plasmons)single-particleexcitations12340132DISPERSIONOFEXCITATIONSIN3D0nointeractingT=0FinitejumpinmomentumdistributionZZquasi-particleweightLIFETIMEOF``QUASI-PARTICLES´´scatteringoutofstatekscatteringintostatekspinscreenedCoulombinteractionenergyconservationIn3Danintegrationoverangulardependencetakescareofd-functionFermi´sgoldenruleyieldsforthelifetimetT=0LIFETIMEOF``QUASI-PARTICLES´´IIIn1Dk,k´arescalars.Integrationoverk´yieldsWhataboutthelifetimetin1D?formally,itdivergesatsmallqbutwecaninsertasmallcut-offAtsmallTi.e.,thisratiocannotbemadearbitrarilysmallasin3DBREAKDOWNOFLANDAUTHEORYIN1D12340132DISPERSIONOFEXCITATIONSIN1D
collectiveexcitationsareplasmonswith(RPA)singleparticlegaplessplasmon
COLLECTIVEAND
SINGLE-PARTICLEEXCITATIONNONDISTINCT
nolongerdivergesat(noangularintegrationoverdirectionofasin3D)THETOMONAGA-LUTTINGERMODELEXACTLYSOLVABLEMODELFORINTERACTING1DELECTRONSATLOWENERGIESDispersionrelationislinearizednear(bothcollectiveandsingle-particleexcitationshavelineardispersion)ModelbecomesexactwhenlinearizedbranchesextendfromAssumptions:OnlysmallmomentaexchangesareincludedTOMONAGA-LUTTINGERHAMILTONIANFreepart
freepartinteraction
fermionicannihilation/creationoperatorsIntroducerightmoving
k>0,andleftmovingk<0electronsTLHAMILTONIANIIInteractions
freepartinteractionbackscatteringforwardumklappforwardBOSONIZATIONBOSONIZATION:EXPRESSFERMIONICHAMILTONIANINTERMSOFBOSONICOPERATORSconstructbosonicHamiltonianwiththesamespectrun(a)(b)(c)(d)(a)and(b)havesamespectrumbutdifferentgroundstateEXCITEDSTATECANBEWRITTENINTERMSOFCHARGEEXCITATIONS,ORBOSONICELECTRON-HOLEEXCITATIONSSTEP1WHICHOPERATORSDOTHEJOB?Introducethedensityoperators(createexcitationofmomentumq)andconsidertheircommutationrelations
nearlybosonic
commutationrelationsSTEP1:PROOFConsidere.g.algebraoffermionicoperatorsoccupationoperatorSTEP2ExaminenowBOSONIZEDHAMILTONIANSTATESCREATEDBYAREEIGENSTATESOFWITHENERGY
andinteractionsSTEP2:PROOFExample:STEP3IntroducethebosonicoperatorsyieldingDIAGONALIZATIONSPIN-CHARGESEPARATIONandinteraction(satisfyingSU2symmetry)Ifweincludespin,itgetsslightlymorecomplicated...andinterestingIntroducethespinandchargedensitiesHamiltoniandecoupleintwoindependentspinandchargeparts,withexcitationspropagatingwithvelocitiesSPACEREPRESENTATIONLongwavelengthlimit(interactions)AppropriatelinearcombinationsP,qofthefieldr(x)canbedefined.ThenonefindswhereLuttingerparameterg<1repulsiveinteractionBOSONICREPRESENTATIONOFYFermionicoperatorWheree.g.Expressyintheformofabosonicdisplacementoperator
B
from
decreasesthenumberofelectronsbyonedisplacesthebosonconfigurationforthatstateBOSONIZATIONIDENTITYifac-numberUladderoperator,qbosonicLOCALDENSITYOFSTATESi)Localdensityofstatesatx=0ndensityofstatesofnon-interactingsystematT=0ii)LocaldensityofstatesattheendofaLuttingerliquidatT=0cut-offenergyG
gammafunctionMEASURINGTHELDOS
Measurementofthelocaldensityofstatessystem1system2couplingIVbytunnelingSeee.g.carbonnanotubeexperimentbyBockrathetal.Nature,397,598(1999)MEASURINGTHELDOSIItunnelingrateitojTunnelingcurrentcanbeevaluatedbyuseofFermi´sgoldenruleconstant
LLtoLLLLtometalSINGLEIMPURITYAgaintunnelingcurrentcanbeevaluatedbyuseofFermi´sgoldenrule
endtoendWeaklinkx=0However,nowistunnelingfromtheendofaLLChargedensitywaveispinnedattheimpurityPHYSICALREALIZATIONS
SemiconductingquantumwiresEdgestatesinfractionalquantumHalleffectSingle-walledmetalliccarbonnanotubesEFEnergymetallic1Dconductorwith
2linearbandsk5.3强关联体系窄能带现象金属与绝缘体之分:(1)能带框架下的区分:导带导带价带价带(2)无序引起的Anderson转变:局域态扩展态局域态局域态局域态扩展态EFEF(3)电子间关联导致的Mott金属-绝缘体转变(a).MnO:5个3d未满3d带;O2-2p是满带不与3d能带重叠能带论MnO的3d带将具有金属导电性实际上,MnO是绝缘体!(b).ReO3:能带论绝缘体。实际上是金属。(c).一些过渡金属氧化物当温度升高时会从绝缘体金属f电子或d电子波函数的分布范围是否和近邻产生重叠,是电子离域还是局域化的基本判据l壳层体积与Winger-Seitz元胞体积的比值:4f最小,5f次之,3d,4d,5d…多电子态的局域化强度的顺序:4f>5f>3d>4d>5d______________能带宽度上升另外,从左往右穿过周期表,部分填充壳层的半径逐步降低,关联重要性增加。4f,5f元素和3d,4d,5d元素的壳层体积与Winger-Seitz元胞体积的比值YScSmith和Kmetko准周期表窄带区域重费米子强铁磁性超导体离域性局域性另一类窄带现象:来自能带中的近自由电子与溶在晶格中具有3d,5f或4f壳层电子的溶质原子相互作用
Friedel与Anderson稀土元素或过渡金属化合物中的能隙不可能仅用“电荷转移能”、“杂化能隙”、“有效库仑相关能”三者之一来描述,而应该说三者同时发挥作用。稀土化合物部分存在混价“mixedvalence”。混价的作用导致在Fermi面附近存在非常窄的能带(部分填充f能带或f能级),电子可以在4f能级和离域化能带之间转移,对固体基态性质产生显著影响。2.窄能带现象的理论模型选择经验参数的模型Hamilton量方法Hubbard模型和Anderson模型TheHubbardModelFromsimplequantummechanicstomany-particleinteractioninsolids-ashortintroductionHistoricalfactsHubbardModelwasfirstintroducedbyJohnHubbardin1963.WhowasHubbard?Hewasbornin1931anddied1980.Theoreticianinsolidstatephysics,fieldofwork:Electroncorrelationinelectrongasandsmallbandsystems.HeworkedattheA.E.R.E.,Harwell,U.K.,andattheIBMResearchLabs,SanJosé,USA.Picturetakenfrom:PhysicsToday,Vol.34,No4,1981What,ingeneral,istheHM?
Hubbardmodelisaquantumtheoreticalmodelformany-particleinteractioninandwithaperiodiclatticeItisbasedonaninteractionHamitonian,sometransformationsandassumptionstobeabletotreatcertainproblems(e.g.magneticbehaviourandphasetransitions)withsolidstatetheoryQuantummechanicsBasics:Schrödingerequation
Expectationvalues
Orthonormalityandclosurerelation
Thebra-ketnotationBasistransformation,mathematicallyAbasistransformationcanbesimplyperformed:Anequationistransformedthesameway:SingleparticleequationsParticleinapotential:
Periodicpotentials:
Solutionforweakcouplingtopotential:
BlochwaveSingleparticleequationsDispersionrelationforfreeelectrons(dashedline):DispersionrelationforBlochelectrons(quasi-free)(solidline):Theenergiesat arenolongerdegenerated.Twoeigenenergiesatthosepoints.GraphfromGerdCzycholl,„TheoretischeFestkörperphysik“,Vieweg-VerlagSingleparticleequationsWannierstatesproduceanorthonormalbaseoflocalizedstates;atomicwavefunctionswouldalsobelocalized,buttheyarenotorthonormal.Strongerlatticepotential:couplingtolatticepointsoccurs;amodifiedBlochwaveisused,e.g.WannierstatesresultingfromtheTight-Binding-Model:ComparisonbetweenthetwonewwavefunctionsBlochwavefunctionWannierwavefunction(w-part)GraphfromGerdCzycholl,„TheoretischeFestkörperphysik“,Vieweg-VerlagGraphfromGerdCzycholl,„TheoretischeFestkörperphysik“,Vieweg-VerlagWavefunctionformanyparticlesWavefunctionisnotsimplytheproductofallsingleparticlewavefunctions;ParticlescannotbedifferedFermionsmustobeyPauliprincipleAnsatz:SlaterdeterminanteSecondQuantizationforFermionsCreationanddistructionoperatorscreateordestroystates:SecondQuantizationTheoperatorsfulfillthecommutatorrelation:Thisisamust,otherwiseonewoulddisturbclosurerelationandorthonormalityofwavefunctionsdescribedbysecondquantizationHamiltonianformanyparticlesSummationoverallsingleparticlesHamiltonians+interactionHamiltonian:interactionpotentialuistherepulsiveCoulombinteractionOperatorsinsecondquantizationOperatorsinsecondquantizationHamiltonianinsecondquantizationIstransformedliketheone-particleoperatorA(1)andthetwo-particleoperatorA(2)HamiltonianinsecondquantizationNow:Matrixelement mustbedetermined.Herefore,awavefunctionhastobechosen.Example:Bloch-waveComingclosertoHubbard...EvaluationofmatrixelementswithWannierwavefunctions:FinalAssumptionsNow:onlydirectneighborinteractions,restrictiontooneband.Meaningofmatrixelementst:singleparticlehoppingU:Hubbard-U,describesonsite-CoulombinteractionV:Nearest-neighbor(density)interactionX:conditionalhoppinginteractionTheHubbardModelssimpleHubbardmodelextendedHubbardmodelandanycombinationofmatrixelements...Mott-Hubbardtransition,insulating(Mott)phaseCase1:Strongcoupling,U/t>>1:Mottinsulating
stateforahalf-filledsystem.Thedensityofstates(availablestatesforaddingorremovingparticle)consitsof
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 青少年如何预防糖尿病
- 成都高尔夫球场租赁合同范本
- 电力公司入驻管理
- 酒店网络营销人员劳动合同模板
- 融资风险防范确保企业资金安全
- 智能家居招投标基本知识介绍
- 国有企业采购政策制定
- 电力工程钢板租赁协议
- 市场营销技能工资管理
- 环保科技公司人事经理聘用合同
- 肝内胆管细胞癌-并茂课件
- 六年级下册科学课件- 3.2 月相变化|教科版 (共19张PPT)
- 某某商会某某专业委员会管理办法
- 幼儿园音乐活动的设计与组织课件
- 碳酸二甲酯安全技术说明书(msds)
- 黑色渐变文明交通安全出行中学生交通安全教育课PPT模板
- 第7章散客旅游服务程序与服务质量《导游业务》(第五版)
- 后续服务的安排及保证措施
- 学习通《古典诗词鉴赏》习题(含答案)
- 维吾尔族的传统文化课件
- 异物管控记录表
评论
0/150
提交评论