第七章:限失真编码2(英文)_第1页
第七章:限失真编码2(英文)_第2页
第七章:限失真编码2(英文)_第3页
第七章:限失真编码2(英文)_第4页
第七章:限失真编码2(英文)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

§7.4:Limitedlosssourceencodingtheorem-1LimitedlosssourceencodingtheoremAuthenticationPracticalsignificance§7.4:Limitedlosssourceencodingtheorem-2LimitedlosssourceencodingtheoremAssumeR(D)isadistortionfunctionofdiscretenon-memorysteadysource,andithaslimitedinfidelitymeasure.ForanyD≥0,ε>0,δ>0andanyenoughcodelengthn,therewillinevitablyexistakindofsourceencodingC,whichcodenumberis:M=exp{n[R(D)+ε]}itsaverageinfidelityafterencoding:d(C)≤D+δifuseddualencoding,theunitofR(D)isbit,thenthepreviousexpressionMcanbe:M=2{n[R(D)+ε]}§7.4:Limitedlosssourceencodingtheorem-3Explanation:ForanyinfidelityD≥0,ifthecodelengthnisenough,wecanalwaysfindakindofencodingCtomaketheinfo.transmitrateofeachsourcesignalbeafterencoding:R′=logM/n=R(D)+εnamely:R′≥R(D)itscodeaverageinfidelityd(C)≤D。WithpermitteddistortionD,theleastandavailableinfo.transmitrateisR(D)ofthesource.§7.4:Limitedlosssourceencodingtheorem-4Authenticationproblem:设有达到R(D)的试验信道p(v|u),要证明对于任意的R‘>R(D)时,存在一种信息传输率为R’的信源编码,其平均失真度≤D+δtrainofthought:产生码书选取编译码方法计算失真度method:产生码书:在Vn空间随机抽取M=2nR’个随机序列v编码方法:若存在与信源序列u构成失真典型序列对的序列v(ω),则编码uv(ω),否则编码uv(1)译码:再现v(ω)失真度计算:在所有随机码书和Un空间统计平均的基础上计算平均失真度§7.4:Limitedlosssourceencodingtheorem-5SeveralstatementsItisonlyaexistencetheorem,doesn'thasconstructmethods.Problemexisted:ItisdifficulttocalculatethefunctionR(D)ofpracticalsourceItisdifficulttogetaccuratemathematicdescriptionofthesourcestatisticcharacteristicsItisdifficulttogettheinfidelitymeasureofthepracticalsourceR(D)itselfisdifficulttocalculateEvenifwehavegotR(D),westillresearchthebestencodingmethodtogetthelimitvalueofR(D).§7.4:Limitedlosssourceencodingtheorem-6PracticalsignificanceHowtoencoding?Example:PracticalsignificanceofR(D)SourcefunctionR(D)canbeakindofscaletomeasurevariouscompressedencodingmethodswithcertainpermitteddistortion.

example:BinarysymmetricsourcewithoutmemoryCompiledcode:无噪无损信道传输Example:conclusion

R’=1/3(bit/sourcesignal)Info.transmitratewiththiscompressedencodingmethodd(C)=1/4AveragedistortionwiththiscompressedencodingmethodR(1/4)=1-H(1/4)=0.189(bit/sourcesignal)Withthe1/4infidelity,theleastinfo.transmitrateRis0.189(bit/sourcesignal)R(1/4)<R’Withthe1/4infidelity,thiscompressedencodingmethodisnotthebestorthesourcecanbefurthercompressed.§7.5:RelationandcompareofthethreeShannontheorems-1

无失真信源编码定理限失真信源编码定理信源冗余度压缩编码信源的熵压缩编码无失真、保熵有失真、熵压缩信源压缩的极限值:信源熵H(S)信源压缩的极限值:率失真函数R(D)存在性、构造性存在性定理§7.4:RelationandcompareofthethreeShannontheorems-2

信道编码定理限失真信源编码定理给定信道特性p=p(y|x)给定信源p=p(u)及失真测度d(u,v)对于假设的信源p=p(x)对于假设的试验信道p=p(v|u)寻求最优的信道编码C2寻求最优的限失真编码C3产生的误码率pe产生的最大失真D信道编码存在的条件R<C限失真信源编码存在的条件R>R(D)信道容量公式率失真函数公式存在符合条件的C2,使pe0存在符合条件的C3,使D’<DEntropycompressencodingEmphasizethreetypicalmethod:1)quantify,scalarquantityquantify,vectorquantify2)transformationencoding3)predictionencodingGenerally,wecallvectorquantifyandtransformationencodingtheentropycompressedgroupencoding,andcallpredictionencodingtheentropycompressedtreecode.Astheprevioussaying,withpermittedcertainDtocompresstheentropyrateleast,namely,maketheratedistortionfunctionleast.Dmin123RD1为直接矢量量化;2为先作变换,再L-M算法;3对其各分量直接用L-M算法结论:矢量量化是熵压缩分组编码的最有效方法如图①>②>③QuantifyItincludescalarquantityandvectorquantify.Nowwefocusonthescalarquantityquantify.1

Applicationscope:continuousnon-memorysource2

Concept:continuoussignalbequantifiedtoKpossiblediscretevalues

example:A/DgatherboardQuantifyconceptofquantifyQuantifyinA/DFig.ofquantifyprocessAnexampleofquantify

Quantificationprocessingisapowerfulmeasuretodropthedatabitrate.Thedynamicrangeofquantificationinputvalueishuge,thusneedsmulti-bittoexpressonevalue.Thequantificationoutputonlycantakethelimitedinteger,calledthequantizationstep.Eachquantificationinputisforcedtoturntothecloseoutput,namelybequantifiedtosomelevel.

Quantificationprocessingalwaysquantifiedabatchofinputstooneoutputstage,thereforethequantificationisamany-to-onetreatingprocesses.Inthequantificationprocessinginformationmaybelost,thatis,mayleadtoquantificationerror(quantificationnoise).

Theprocessofthesimulationquantityobtainingthebinarycode

afterA/Dtransformationisthepulsecodemodulation(PCM),alsocalledPCMencoding.

ThesamplingandthequantificationofA/Dtransformationareindividuallyprocessofdigitizingthetimeandthesimulationquantitytheprocess.QuantifyconceptofquantifyQuantifyinA/DFig.ofquantifyprocessAnexampleofquantify输入输出阈值代表级量化曲线QuantifyconceptofquantifyQuantifyinA/DFig.ofquantifyprocessAnexampleofquantify24位标准图像8位(256色)标准图像QuantifyconceptofquantifyQuantifyinA/DFig.ofquantifyprocessAnexampleofquantifyBasicprincipleofpredictionencodingmethod

Consideringthestrongrelevantcharacteristicsbetweentheneighboringdata,wemayusethevaluewhichalreadyappearedtocarryontheprediction(estimate),obtainedapredictionvalue,thensubtracttheactualvalueandthepredictionvalue,encodeandtransmitthedifferencesignal,thisencodemethodiscalledpredictivecodingmethod.PredictionencodingBestpredictioncode:en=yn-unisthesmallest.Havethreedifferentcriterions:Smallestmeanerror;Smallestmeanabsoluteerror;BiggestzeroerrorprobabilityN.DPCMbasicprinciple转入f(i,j)e(i,j)量化器预测器预测器编码器解码器信道传输e’(i,j)f’(i,j)输出f(i,j)f’(i,j)f’(i,j)f(i,j)DPCM编、解码原理图Predictionencoding

TheDPCMlinearpredictioncoding

which

doesnothavethequantizerbelongstothelosslesscodingsystem;TheDPCMlinearpredictioncodinghasthequantizerbelongstothedistortioncodingsystem.

DPCMlinearpredictioncodingsystemisanegativefeedbacksystemandithasastringencytotheerror.Betweenthetransmittingendandthereceivingend,errorwasequaltothequantificationerror.Todesignbestquantizer,mayusethephysiologicalcharacteristicssuchastheeyevisualvisibilitythresholdvalueandvisualmaskingeffecttodeterminethestepanddistanceofthequantizer,thiswillcausethequantificationerroralwaysbeinthescopewhichthepersoneyeperceivedwithdifficulty,andachievedthesubjectivelyevaluatingcriterion.

BestquantifyPredictioncodingADPCM

Theconceptofauto-adaptedtechnologyis:thepredictioncoefficientandthequantizerquantificationparameterofthepredictorcanautomaticallyadjustaccordingtothecharacteristicofthepicturepartialregiondistribution.

PracticeprovedthatcomparesADPCMencodinganddecodingsystemwiththoseofDPCM,theADPCMnotonlycanimprovetheevaluationqualityandthevisualeffectofrestoringthepicture,butalsocanfurthercompressthedata.

ADPCMsystemincludingtheadaptiveprediction,namelytheauto-adaptedadjustmentandtheauto-adaptedquantificationofthepredictioncoefficient,thatis,thetwopartsofcontentsquantizerparameterauto-adaptedadjusts.PredictioncodingPrincipleofchangeablecodingDef.:Mappingtransformstheairzonepicturesignaltoanotherorthogonalvectorsspace(transformationterritoryorfrequencyrange),produceonebatchoftransformationratios,codethecoefficient.Principles:Informationredundancyofthesignalwhentimedomaindescriptionisbig,afterthetransformation,theparameterisindependent,removestherelevance,reducestheredundancy,thedataquantitywilldeeplyreduce.Takingadvantageofperson'svisualcharacteristic,thatis,itisinsensitivetothehighfrequencydetail,wemayfilterthehighfrequencycoefficientandreservethelowfrequencycoefficient.

ExplanationoftransformationprincipleinmathematicsWhentimedomaindescriptiontheinformationredundancyofthesignalisbig,afterthetransformation,theparameterisindependent,thedataquantityreduces.ThespatialtransformationisseekingagroupofnewstandardtogetcoefficientoftheoriginalvectorintheneworthogonalcardinalnumbersTakingadvantageofperson'svisualcharacteristic,thatis,itisinsensitivetothehighfrequencydetail,wemayfilterthehighfrequencycoefficientandreservethelowfrequencycoefficient.approachestheoriginalvectorwithlimiteddimensionslinearcombination,theprojectiontheorem.Bestorthogonaltransformation:K-LtransformationX1X2Y1Y2Gettingthejointvariancematrixofthecorrelationvectorshouldaccordingtosizearrangementcharacteristicvectorofthecharacteristicvalue.Inthetransformationterritorytheenergyconcentratesintheminorityseveraltransformationratio(coefficientofincharacteristicvectorwhichhasbigcharacteristicvalue),thencodingefficiencywillbethehighestandtheerrorwillbethesmallest.K-L变换图示3)SeveralindexesthatthescalarquantityquantifyconcerningP243Info.Rate:RKAveragedistortion:DKThebiggestoutputrateofthequantifier:Mk=log2kObviously:fordifferent{TK}and{qk},thequantificationwillhasvariousRK,DK,MKTK:Threshold

level(k+1个)qk:levelvalue(k个)4)

evenquantifyConcept:equalq

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论