版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.27的立方根是()A.±3 B.±3 C.3 D.32.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,矩形ABCD内的一个动点P落在阴影部分的概率是()A. B. C. D.3.如图,Rt△ABC中,∠C=90°,AC=3,BC=1.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S1.则S1﹣S2+S3+S1等于()A.1 B.6 C.8 D.124.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A. B. C. D.5.如图,的外接圆的半径是.若,则的长为()A. B. C. D.6.如图,已知一次函数y=kx-2的图象与x轴、y轴分别交于A,B两点,与反比例函数的图象交于点C,且AB=AC,则k的值为()A.1 B.2 C.3 D.47.下列命题中,正确的个数是()①直径是弦,弦是直径;②弦是圆上的两点间的部分;③半圆是弧,但弧不一定是半圆;④直径相等的两个圆是等圆;⑤等于半径两倍的线段是直径.A.2个 B.3个 C.4个 D.5个8.一个几何体的三视图如图所示,则该几何体的表面积为()A.4π B.3π C.2π+4 D.3π+49.如图所示,某公园设计节日鲜花摆放方案,其中一个花坛由一批花盆堆成六角垛,顶层一个,以下各层堆成六边形,逐层每边增加一个花盆,则第七层的花盆的个数是()A.91 B.126 C.127 D.16910.如图(1)所示,为矩形的边上一点,动点,同时从点出发,点沿折线运动到点时停止,点沿运动到点时停止,它们运动的速度都是秒,设、同时出发秒时,的面积为.已知与的函数关系图象如图(2)(曲线为抛物线的一部分)则下列结论正确的是()图(1)图(2)A. B.当是等边三角形时,秒C.当时,秒 D.当的面积为时,的值是或秒二、填空题(每小题3分,共24分)11.如图,在Rt△ABC中,∠ACB=90°,AC=BC=,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是_____.12.如图,某园林公司承担了绿化某社区块空地的绿化任务,工人工作一段时间后,提高了工作效率.该公司完成的绿化面积(单位:与工作时间(单位:)之间的函数关系如图所示,则该公司提高工作效率前每小时完成的绿化面积是____________.13.若关于x的一元二次方程x22x+m=0有实数根,则实数m的取值范围是______.14.如图,点、、在上,若,,则________.15.若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是_________.16.如图,在Rt△ABC中,∠ACB=90°,tanB=则斜坡AB的坡度为____________17.如图,△ABC的外心的坐标是____.18.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是_____.三、解答题(共66分)19.(10分)如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π).20.(6分)如图,在□ABCD中,E是AD的中点,延长CB到点F,使BF=BC,连接BE、AF.(1)求证:四边形AFBE是平行四边形;(2)若AB=6,AD=8,∠C=60°,求BE的长.21.(6分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.22.(8分)如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,把△ABD、△ACD分别以AB、AC为对称轴翻折变换,D点的对称点为E、F,延长EB、FC相交于G点.(1)求证:四边形AEGF是正方形;(2)求AD的长.23.(8分)如图,中,,,为内部一点,.求证:.24.(8分)如图,是直径AB所对的半圆弧,点P是与直径AB所围成图形的外部的一个定点,AB=8cm,点C是上一动点,连接PC交AB于点D.小明根据学习函数的经验,对线段AD,CD,PD,进行了研究,设A,D两点间的距离为xcm,C,D两点间的距离为cm,P,D两点之间的距离为cm.小明根据学习函数的经验,分别对函数,随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(2)按照下表中自变量x的值进行取点、画图、测量,分别得到了,与x的几组对应值:x/cm0.002.002.003.003.204.005.006.006.502.008.00/cm0.002.042.093.223.304.004.423.462.502.530.00/cm6.245.294.353.463.302.642.00m2.802.002.65补充表格;(说明:补全表格时,相关数值保留两位小数)(2)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,并画出函数的图象:(3)结合函数图象解决问题:当AD=2PD时,AD的长度约为___________.25.(10分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?26.(10分)小王和小张利用如图所示的转盘做游戏,转盘的盘面被分为面积相等的1个扇形区域,且分别标有数字1,2,3,1.游戏规则如下:两人各转动转盘一次,分别记录指针停止时所对应的数字,如两次的数字都是奇数,则小王胜;如两次的数字都是偶数,则小张胜;如两次的数字是奇偶,则为平局.解答下列问题:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【分析】由题意根据如果一个数x的立方等于a,那么x是a的立方根,据此定义进行分析求解即可.【详解】解:∵1的立方等于27,∴27的立方根等于1.故选:C.【点睛】本题主要考查求一个数的立方根,解题时先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2、B【解析】根据矩形的性质,得△EBO≌△FDO,再由△AOB与△OBC同底等高,△AOB与△ABC同底且△AOB的高是△ABC高的得出结论.【详解】解:∵四边形为矩形,∴OB=OD=OA=OC,在△EBO与△FDO中,,∴△EBO≌△FDO,∴阴影部分的面积=S△AEO+S△EBO=S△AOB,∵△AOB与△ABC同底且△AOB的高是△ABC高的,∴S△AOB=S△OBC=S矩形ABCD.故选B.【点睛】本题考查了矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.3、B【解析】本题先根据正方形的性质和等量代换得到判定全等三角形的条件,再根据全等三角形的判定定理和面积相等的性质得到S、S、、与△ABC的关系,即可表示出图中阴影部分的面积和.本题的着重点是等量代换和相互转化的思想.【详解】解:如图所示,过点F作FG⊥AM交于点G,连接PF.根据正方形的性质可得:AB=BE,BC=BD,∠ABC+∠CBE=∠CBE+∠EBD=90,即∠ABC=∠EBD.在△ABC和△EBD中,AB=EB,∠ABC=∠EBD,BC=BD所以△ABC≌△EBD(SAS),故S=,同理可证,△KME≌△TPF,△FGK≌△ACT,因为∠QAG=∠AGF=∠AQF=90,所以四边形AQFG是矩形,则QF//AG,又因为QP//AC,所以点Q、P,F三点共线,故S+S=,S=.因为∠QAF+∠CAT=90,∠CAT+∠CBA=90,所以∠QAF=∠CBA,在△AQF和△ACB中,因为∠AQF=∠ACB,AQ=AC,∠QAF=∠CAB所以△AQF≌△ACB(ASA),同理可证△AQF≌△BCA,故S1﹣S2+S3+S1==31=6,故本题正确答案为B.【点睛】本题主要考查正方形和全等三角形的判定与性质.4、B【解析】根据中心对称图形的概念:如果一个图形绕某一个点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,逐一判断即可.【详解】A.不是中心对称图形,故错误;B.是中心对称图形,故正确;C.不是中心对称图形,故错误;D.不是中心对称图形,故错误;故选:B.【点睛】本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.5、A【分析】由题意连接OA、OB,根据圆周角定理求出∠AOB,利用勾股定理进行计算即可.【详解】解:连接OA、OB,由圆周角定理得:∠AOB=2∠C=90°,所以的长为.故选:A.【点睛】本题考查的是三角形的外接圆和外心的概念和性质,掌握圆周角定理和勾股定理是解题的关键.6、B【分析】如图所示,作CD⊥x轴于点D,根据AB=AC,证明△BAO≌△CAD(AAS),根据一次函数解析式表达出BO=CD=2,OA=AD=,从而表达出点C的坐标,代入反比例函数解析式即可解答.【详解】解:如图所示,作CD⊥x轴于点D,∴∠CDA=∠BOA=90°,∵∠BAO=∠CAD,AB=AC,∴△BAO≌△CAD(AAS),∴BO=CD,对于一次函数y=kx-2,当x=0时,y=-2,当y=0时,x=,∴BO=CD=2,OA=AD=,∴OD=∴点C(,2),∵点C在反比例函数的图象上,∴,解得k=2,故选:B.【点睛】本题考查了反比例函数与一次函数的交点问题,全等三角形的判定与性质,反比例函数图象上点的坐标特征,难度适中.表达出C点的坐标是解题的关键.7、A【分析】根据弦、等圆、弧的相关概念直接进行排除选项.【详解】①直径是弦,弦是不一定是直径,故错误;②弦是圆上两点之间的线段,故错误;③半圆是弧,但弧不一定是半圆,故正确;④直径相等的两个圆是等圆,故正确;⑤等于半径两倍的弦是直径,故错误;所以正确的个数为2个;故选A.【点睛】本题主要考查圆的相关概念,正确理解圆的相关概念是解题的关键.8、D【解析】试题解析:观察该几何体的三视图发现其为半个圆柱,半圆柱的直径为2,表面积有四个面组成:两个半圆,一个侧面,还有一个正方形.故其表面积为:故选D.9、C【分析】由图形可知:第一层有1个花盆,第二层有1+6=7个花盆,第三层有1+6+12=19个花盆,第四层有1+6+12+18=37个花盆,…第n层有1+6×(1+2+3+4+…+n-1)=1+3n(n-1)个花盆,要求第7层个数,由此代入求得答案即可.【详解】解:∵第一层有1个花盆,
第二层有1+6=7个花盆,
第三层有1+6+12=19个花盆,
第四层有1+6+12+18=37个花盆,
…
∴第n层有1+6×(1+2+3+4+…+n-1)=1+3n(n-1)个花盆,
∴当n=7时,
∴花盆的个数是1+3×7×(7-1)=1.
故选:C.【点睛】此题考查图形的变化规律,解题关键在于找出数字之间的运算规律,利用规律解决问题.10、D【分析】先根据图象信息求出AB、BE、BE、AE、ED,A、直接求出比,B、先判断出∠EBC≠60°,从而得出点P可能在ED上时,△PBQ是等边三角形,但必须是AD的中点,而AE>ED,所以点P不可能到AD中点的位置,故△PBQ不可能是等边三角形;C、利用相似三角形性质列出方程解决,分两种情况讨论计算即可,D、分点P在BE上和点P在CD上两种情况计算即可.【详解】由图象可知,AD=BC=BE=5,CD=AB=4,AE=3,DE=2,A、∴AB:AD=5:4,故A错误,B、∵tan∠ABE=,∴∠ABE≠30°∴∠PBQ≠60°,∴点P在ED时,有可能△PBQ是等边三角形,∵BE=BC,∴点P到点E时,点Q到点C,∴点P在线段AD中点时,有可能△PBQ是等边三角形,∵AE>DE,∴点P不可能到AD的中点,∴△PBQ不可能是等边三角形,故B错误,C、∵△ABE∽△QBP,∴点E只有在CD上,且满足,∴,∴CP=.∴t=(BE+ED+DQ)÷1=5+2+(4−)=.故C错误,D、①如图(1)在Rt△ABE中,AB=4,BE=5sin∠AEB=,∴sin∠CBE=∵BP=t,∴PG=BPsin∠CBE=t,∴S△BPQ=BQ×PG=×t×t=t2=4,∴t=−(舍)或t=,②当点P在CD上时,S△BPQ=×BC×PC=×5×(5+2+4−t)=×(11−t)=4,∴t=,∴当△BPQ的面积为4cm2时,t的值是或秒,故D正确,故选:D.【点睛】此题是二次函数综合题,主要考查动点问题的函数图象、矩形的性质、三角形的面积公式等知识.解题的关键是读懂图象信息求出相应的线段,学会转化的思想,把问题转化为方程的思想解决,属于中考常考题型..二、填空题(每小题3分,共24分)11、【解析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【详解】解:如图,∵∠ACB=90°,AC=BC=,∴AB==,∴S扇形ABD==,又∴Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故答案是:.【点睛】本题考查了扇形的面积公式:S=,也考查了勾股定理以及旋转的性质.12、【分析】利用待定系数法求出提高效率后与的函数解析式,由此可得时,的值,然后即可得出答案.【详解】由题意,可设提高效率后得与的函数解析式为将和代入得解得因此,与的函数解析式为当时,则该公司提高工作效率前每小时完成的绿化面积故答案为:100.【点睛】本题考查了一次函数的实际应用,依据图象,利用待定系数法求出函数解析式是解题关键.13、m≤1【分析】利用判别式的意义得到,然后解不等式即可.【详解】解:根据题意得,
解得.
故答案为:.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.14、【分析】连接OB,先根据OA=OB计算出,再根据计算出,进而计算出,最后根据OB=OC得出即得.【详解】解:连接OB,如下图:∴∴,∵∴∴故答案为:【点睛】本题考查了圆的性质及等腰三角形的性质,解题关键是熟知同圆的半径相等,同弧所对的圆周角是圆心角的一半.15、y2>y1>y1【分析】根据反比例函数的图象和性质,即可得到答案.【详解】∵反比例函数的比例系数k<0,∴在每一个象限内,y随x的增大而增大,∵点A(﹣4,y1)、B(﹣2,y2)、C(2,y1)都在反比例函数的图象上,∴y2>y1>0,y1<0,∴y2>y1>y1.故答案是:y2>y1>y1.【点睛】本题主要考查反比例函数的图象和性质,掌握反比例函数的增减性,是解题的关键.16、【分析】由题意直接利用坡度的定义进行分析计算即可得出答案.【详解】解:∵在Rt△ABC中,∠ACB=90°,tanB=,∴∠B=60°,∴∠A=30°,∴斜坡AB的坡度为:tanA=.故答案为:.【点睛】本题主要考查解直角三角形的应用,熟练掌握坡度的定义以及特殊三角函数值是解题的关键.17、【解析】试题解析:∵△ABC的外心即是三角形三边垂直平分线的交点,∴作图得:∴EF与MN的交点O′即为所求的△ABC的外心,∴△ABC的外心坐标是(﹣2,﹣1).18、﹣1.5或2【解析】将二次函数配方成顶点式,分m<-1、m>2和-1≤m≤2三种情况,根据y的最小值为-2,结合二次函数的性质求解可得.【详解】y=x2-2mx=(x-m)2-m2,
①若m<-1,当x=-1时,y=1+2m=-2,
解得:m=-32=-1.5;
②若m>2,当x=2时,y=4-4m=-2,
解得:m=32<2(舍);
③若-1≤m≤2,当x=m时,y=-m2=-2,
解得:m=2或m=-2<-1(舍),
∴m的值为-1.5或2,
故答案为:﹣1.5或【点睛】本题考查了二次函数的最值,根据二次函数的增减性分类讨论是解题的关键.三、解答题(共66分)19、(1)直线CD与⊙O相切(1)【解析】(1)直线CD与⊙O相切.如图,连接OD.∵OA=OD,∠DAB=45°,∴∠ODA=45°,∴∠AOD=90°.∵CD∥AB,∴∠ODC=∠AOD=90°,即OD⊥CD.又∵点D在⊙O上,直线CD与⊙O相切.(1)∵BC∥AD,CD∥AB,∴四边形ABCD是平行四边形,∴CD=AB=1.∴S梯形OBCD=,∴图中阴影部分的面积为S梯形OBCD-S扇形OBD=20、(1)证明见解析;(2).【分析】(1)根据平行四边形的性质证明,再由一组对边平行而且相等的四边形是平行四边形判定即可判定;
(2)过点A作AG⊥BF于G,构造30读直角三角形,利用平行四边形的性质和勾股定理解答即可.【详解】证明:(1)∵四边形为平行四边形,∴,,又∵是的中点,,∴,又∵,∴四边形是平行四边形.(2)过点作于,由可知:,∴,∴,又∵,,∴,,∴,在中,由勾股定理得:,在中,由勾股定理得:,∴.【点睛】本题考查了平行四边形的判定与性质、勾股定理.平行四边形的判定方法共有4种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.21、(1)75;4;(2)CD=4.【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【详解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴.又∵AO=3,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴.∵BO:OD=1:3,∴.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=1.在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,解得:CD=4.【点睛】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.22、(1)见解析;(2)AD=1;【分析】(1)先根据△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根据对称的性质得到AE=AF,从而说明四边形AEGF是正方形;(2)利用勾股定理,建立关于x的方程模型(x﹣2)2+(x﹣3)2=52,求出AD=x=1.【详解】(1)证明:由翻折的性质可得,△ABD≌△ABE,△ACD≌△ACF,∴∠DAB=∠EAB,∠DAC=∠FAC,∵∠BAC=45°,∴∠EAF=90°,∵AD⊥BC,∴∠E=∠ADB=90°,∠F=∠ADC=90°,∴四边形AEGF为矩形,∵AE=AD,AF=AD,∴AE=AF,∴矩形AEGF是正方形;(2)解:根据对称的性质可得:BE=BD=2,CF=CD=3,设AD=x,则正方形AEGF的边长是x,则BG=EG﹣BE=x﹣2,CG=FG﹣CF=x﹣3,在Rt△BCG中,根据勾股定理可得:(x﹣2)2+(x﹣3)2=52,解得:x=1或x=﹣1(舍去).∴AD=x=1;【点睛】本题考查了翻折对称的性质,全等三角形和勾股定理,以及正方形的判定,解本题的关键是熟练掌握翻折变换的性质:翻折前后图形的对应边或对应角相等;有四个角是直角的四边形是矩形,有一组邻边相等的矩形是正方形.23、详见解析【分析】利用等式的性质判断出∠PBC=∠PAB,即可得出结论;【详解】解:,,又,,,又,.【点睛】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠PBC=∠PAB是解本题的关键.24、(2)m=2.23;(2)见解析;(3)4.3【分析】(2)根据表格中的数据可得:当x=5或2时,y2=2.00,然后画出图形如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年玻璃钢车门行业深度研究分析报告
- 2025年芯料拉丝造粒机项目投资可行性研究分析报告
- 2025年新车购车环保补贴合同书范本3篇
- 2025年房产交易:买卖双方转让合同2篇
- 2025年度私人房产买卖合同样本(含房产交易税费)3篇
- 2025年度食堂劳务承包合同范本12篇
- 2025-2030年中国龙井茶市场需求状况与发展策略研究报告
- 2025-2030年中国高分子发泡材料行业发展动态及前景趋势分析报告
- 2025-2030年中国食用香精香料市场发展状况及前景趋势分析报告
- 2025-2030年中国隔离开关行业运行动态及投资发展建议咨询报告
- 奶茶督导述职报告
- 山东莱阳核电项目一期工程水土保持方案
- 白熊效应(修订版)
- 小学数学知识结构化教学
- 视频监控维保项目投标方案(技术标)
- 社会组织能力建设培训
- 立项报告盖章要求
- 2022年睾丸肿瘤诊断治疗指南
- 被执行人给法院执行局写申请范本
- 主变压器试验报告模板
- 安全防护通道施工方案
评论
0/150
提交评论