版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
泸州市2022-2023学年高三上学期期末模拟考试文科数学本试卷共4页。考试结束后,只将答题卡交回注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则A. B. C. D.2.已知i为虚数单位,则A.1+iB.1-iC.-1+iD.-1-i3.函数的图象大致为A.B.C.D.4.已知数列的前项和为.若,,则A. B. C. D.5.已知一组正数,,的方差,则数据,,的平均数为A.1 B.3 C.5 D.76.将函数图象上所有点向左平移个单位长度,得到函数的图象,若是奇函数,则a的最小值是A. B. C. D.7.已知双曲线,则下列说法正确的是A.离心率为2 B.渐近线方程为C.焦距为 D.焦点到渐近线的距离为8.新冠肺炎疫情是新中国成立以来在我国发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数随时间(单位:天)的变化规律,其中指数增长率,据此,在新冠肺炎疫情初始阶段,累计感染病例数扩大到原来的10倍需要的时间约为()A.4天 B.6天 C.8天 D.10天9.在中,角,,的对边分别为,,,若,,则的值为A. B. C. D.10.抛物线,直线与交于(左侧为,右侧为)两点,若抛物线在点处的切线经过点,则A. B. C. D.11.已知△SAB是边长为2的等边三角形,∠ACB=45°,当三棱锥S﹣ABC体积最大时,其外接球的表面积为A. B. C. D.12.已知函数,若不等式有且仅有2个整数解,则实数的取值范围是A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分.13.二元一次不等式组表示的平面区域的面积是_________.14.若非零向量、,满足,,则与的夹角为___________.15.已知函数,若,则实数的取值范围是______.16.已知函数,下列关于函数的说法正确的序号有________.①函数在上单调递增;②是函数的周期;③函数的值域为;④函数在内有4个零点.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分。17.(12分)为了解某水果批发店的日销售量,对过去100天的日销售量进行了统计分析,发现这100天的日销售量都没有超出4.5吨,统计的结果见频率分布直方图.(1)求这100天中日销售量的中位数(精确到小数点后两位);(2)从这100天中抽取了5天,统计出这5天的日销售量(吨)和当天的最高气温(℃)的5组数据,研究发现日销售量和当天的最高气温具有的线性相关关系,且,,,.求日销售量(吨)关于当天最高气温(℃)的线性回归方程,并估计水果批发店所在地区这100天中最高气温在10℃~18℃内的天数.参考公式:,.18.(12分)已知数列的前n项和为,且.(1)证明:是等比数列,并求的通项公式;(2)在①;②;③这三个条件中任选一个补充在下面横线上,并加以解答.已知数列满足___________,求的前n项和.注:如果选择多个方案分别解答,按第一个方案解答计分.19.(12分)如图的三棱台,平面,,.(1)求证:平面平面;(2)若E,F分别为,的中点,求三棱锥的体积.20.(12分)已知点,直线,为轴右侧或轴上动点,且点到的距离比线段的长度大1,记点的轨迹为.(1)求曲线的方程;(2)已知直线交曲线于,两点(点在点的上方),,为曲线上两个动点,且,求证:直线的斜率为定值.21.(12分)已知函数.(1)若在处取得极值,求实数的值;(2)讨论在上的单调性;(3)证明:在(1)的条件下.(二)选考题:共10分.请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分.22.直角坐标系中,曲线的参数方程为(t为参数),以O为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)点A,B为与的交点,C为曲线上一点,求面积的最大值.23.设函数.(1)当时,求不等式的解集;(2)若对于任意实数,不等式恒成立,求实数的取值范围.泸州市2022-2023学年高三上学期期末模拟考试文科数学参考答案:1.D2.B3.A4.C5.C6.D7.A8.B9.A10.D11.B12.A13.114.15.;16.①③④17.解:(1)由频率分布直方图性质知,各组频率之和为1,所以,解得,设中位数为,则,解得,即这100天中日销售量的中位数约为2.06吨;(2)因为,,,所以,,所以销售量(吨)关于当天最高气温(℃)的线性回归方程是:;当时,,当时,,当最高气温早10℃~18℃内时,日销售量在2~4吨,根据频率分布直方图可得再次范围的频率为:,所以估计该景区这100天中最高气温在10℃~18℃内的天数约为:天.18.解:(1)当时,因为,所以,两式相减得,.所以.当时,因为,所以,又,故,于是,所以是以4为首项2为公比的等比数列.所以,两边除以得,.又,所以是以2为首项1为公差的等差数列.所以,即.(2)若选①:,即.因为,所以.两式相减得,所以.若选②:,即.所以.若选③:,即.所以.19.证明:(1)∵三棱台,,∴.∵平面,∴.∵且都在平面内,∴平面.又∵在平面内,∴平面平面.(2)如图,过点E作,.∵平面,∴平面平面.又平面平面∴平面,∴为三棱锥的高,且.∵,,∴.20.解:(1)依题意,线段的长度等于到的距离,由抛物线定义知,点的轨迹是以为焦点,为准线的抛物线,所以的方程为;(2)将代入得,则,,如图:设抛物线E上动点,显然直线AC,AD斜率存在,,同理,因为,则,,直线的斜率,即直线的斜率为定值-1.21.(1)解:因为,在处取得极值,则,所以,解得,当时,,当时,单调递减,当时,单调递增,所以是函数的极值,因此;(2)解:,当时,在上,恒成立,单调递减;当时,令,解得,当时,,单调递减,当时,,单调递增.综上,当时,在上单调递减;当时,在上单调递减,在上单调递增.(3)证明:由(1)知,则,令,,在上单调递增,当时,,当时,,则,使,即,则当时,单调递减,当时,单调递增,所以,令,,所以单调递减,所以,所以,所以,得证.22.解:(1)消去参数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度医疗设备采购与维护合同with技术支持与售后服务
- 2024年度物联网智能硬件设备研发与生产合同3篇
- 2024年度承包合同(建筑工程版)
- 2024年度物流仓储服务与货物运输合同2篇
- 2024年度房产买卖合同标的及交易程序
- 2023年陶瓷资金需求报告
- 2024中国电信贵州公司校园招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国人民财产保险股份限公司永嘉支公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中储粮油脂镇江基地招聘41人易考易错模拟试题(共500题)试卷后附参考答案
- 2024上海红浦劳务派遣限公司招聘10名易考易错模拟试题(共500题)试卷后附参考答案
- 初中道德与法治课堂议题式教学探究
- 2023年房建施工员年终总结及下一年计划
- 110kv各类型变压器的计算单
- 从慢性胃炎到胃癌形成课件
- CRH380B型高寒动车组空调系统
- 四年级上册语文阅读复习课与练习
- 空调维护保养报告范本
- 安全学原理总结
- “班会主题课件-如何提升自我修养”
- 校园欺凌与心理健康的关系研究
- 施工应急管理制度
评论
0/150
提交评论