版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省梅州市宝坑中学2022年高一数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数的单调递减区间是(
)A.
B.C.
D.
参考答案:D略2.已知函数,则的值是(
)A.
B.
C.
D.参考答案:C略3.如图,在△ABC中,点D在线段BC上,且BD=2DC,若,则=()A. B. C.2 D.参考答案:A【考点】平面向量的基本定理及其意义.【分析】根据向量加减的几何意义可得,λ=,μ=,问题得以解决.【解答】解:∵BD=2DC,∴=+=+=+(﹣)=+,∵,∴λ=,μ=,∴=,故选:A【点评】本题考查了向量的加减的几何意义,属于基础题.4.下列函数中,最小正周期为π,且图象关于直线x=对称的是()A.y=sin(2x﹣) B.y=sin(2x﹣) C.y=sin(2x+) D.y=sin(+)参考答案:B【考点】正弦函数的对称性.【分析】将x=代入各个关系式,看看能否取到最值即可.【解答】解:∵y=f(x)的最小正周期为π,可排除D;其图象关于直线x=对称,∴A中,f()=sin=≠±1,故A不满足;对于B,f()=sin(﹣)=sin=1,满足题意;对于C,f()=sin(+)=sin=≠±1,故C不满足;故选B.5.定义在R上的函数f(x)满足f(x)=,且f(x+2)=f(x),g(x)=.则方程在区间上的所有实数根之和最接近下列哪个数(
)A.10 B.8 C.7 D.6参考答案:A【考点】二分法求方程的近似解.【专题】综合题;数形结合;综合法;函数的性质及应用.【分析】由f(x+2)=f(x),得到函数是周期为2的周期函数,分别作出函数f(x),g(x)在上的图象,利用图象观察交点的个数和规律,然后进行求解.【解答】解:∵f(x+2)=f(x),∴函数f(x)是周期为2的周期函数,∵g(x)=,∴g(x)关于直线x=2对称.分别作出函数f(x),g(x)在上的图象,由图象可知两个函数的交点个数为6个,设6个交点的横坐标从小到大为x1,x2,x3,x4,x5,x6,且这6个交点接近点(2,0)对称,则(x1+x6)=2,x1+x6=4,所以x1+x2+x3+x4+x5+x6=3(x1+x6)=3×4=12,其中x=3时,不成立,则f(x)=g(x)在区间上的所有实根之和为12﹣3=9,由图象可知,x1+x6>4,x2+x5>4,x4>1,∴x1+x2+x4+x5+x6>9.故选A.【点评】本题主要考查函数交点个数和取值的判断,利用数形结合是解决此类问题的基本方法.本题综合性较强,难度较大.6.函数y=logax(a>0且a≠1)的图象经过点(2,﹣1),函数y=bx(b>0且b≠1)的图象经过点(1,2),则下列关系式中正确的是()A.a2>b2 B.2a>2b C.()a>()b D.参考答案:C【考点】对数函数的单调性与特殊点;指数函数的单调性与特殊点.【分析】由已知条件,把点的坐标代入对应的函数解析式,求出a=、b=2,从而可得结论.【解答】解:∵函数y=logax(a>0且a≠1)的图象经过点,∴loga2=﹣1,∴a=.由于函数y=bx(b>0且b≠1)的图象经过点(1,2),故有b1=2,即b=2.故有b>a>0,∴,故选:C.【点评】本题主要考查对数函数的单调性和特殊点,指数函数的单调性和特殊点,求出a=、b=2是解题的关键,属于中档题.7.为了得到函数的图像,只需把函数的图像()A.向右平移个长度单位
B.向左平移个长度单位C.向右平移个长度单位
D.向左平移个长度单位参考答案:A
8.下列命题正确的有()
(1)很小的实数可以构成集合;
(2)集合{y|y=x2-1}与集合{(x,y)|y=x2-1}是同一个集合;(3)1,,,|-|,0.5这些数组成的集合有5个元素;(4)集合{(x,y)|xy≤0,x,y∈R}是指第二和第四象限内的点集.A.0个
B.1个
C.2个
D.3个参考答案:A9.以下元素的全体不能够构成集合的是
A.中国古代四大发明
B.地球上的小河流C.方程的实数解
D.周长为10cm的三角形参考答案:B10.下列命题正确的是()A.单位向量都相等B.若与共线,与共线,则与共线C.若,则D.若与都是单位向量,则参考答案:CA选项,单位向量模相等,但方向不一定相同,故A错;B选项,因为零向量与任意向量共线,故B错;C选项,对等式两边平方,易得,故C正确;D选项,与夹角为60°时,,故D错误.故选:C
二、填空题:本大题共7小题,每小题4分,共28分11.已知,则________.参考答案:12.不等式(2﹣x)(2x+1)>0的解集为.参考答案:【考点】74:一元二次不等式的解法.【分析】根据题意,将不等式变形为(x﹣2)(2x+1)<0,结合一元二次函数的性质分析可得答案.【解答】解:根据题意,(2﹣x)(2x+1)>0?(x﹣2)(2x+1)<0,解可得﹣<x<2,则不等式(2﹣x)(2x+1)>0的解集为故答案为:13.设向量a,b,c满足a+b+c=0,(a-b)⊥c,a⊥b.若|a|=1,则|a|2+|b|2+|c|2的值是参考答案:4因为向量a,b,c满足a+b+c=0,所以c=-a-b,又因为(a-b)⊥c,所以(a-b)⊥(a+b),即,又a⊥b,所以,,所以|a|2+|b|2+|c|2的值4.14..已知函数是定义在实数集R上的奇函数,且在区间上是单调递增,若,则的取值范围为
.参考答案:略15.函数f(x)=在区间(﹣2,+∞)上是递增的,实数a的取值范围
.参考答案:(,+∞).【考点】函数单调性的性质.【分析】先将函数解析式进行常数分离,然后利用增函数的定义建立关系,进行通分化简,判定每一个因子的符号,从而求出a的范围.【解答】解:f(x)===+a、任取x1,x2∈(﹣2,+∞),且x1<x2,则f(x1)﹣f(x2)=﹣=.∵函数f(x)=在区间(﹣2,+∞)上为增函数,∴f(x1)﹣f(x2)<0,∵x2﹣x1>0,x1+2>0,x2+2>0,∴1﹣2a<0,a>,即实数a的取值范围是(,+∞).16.设函数f(x)=,若函数f(x)在(a,a+1)递增,则a的取值范围是.参考答案:(﹣∞,1]∪[4,+∞)【考点】函数单调性的性质.【分析】求出分段函数各段的单调性,再由条件可得a+1≤2或a≥4,解出即可.【解答】解:当x≤4时,y=﹣x2+4x=﹣(x﹣2)2+4,则在(﹣∞,2]上递增,(2,4]上递减;当x>4时,y=log2x在(4,+∞)上递增.由于函数f(x)在(a,a+1)递增,则a+1≤2或a≥4,解得a≥4或a≤1,故答案为:(﹣∞,1]∪[4,+∞).17.终边在轴上的角的集合_______________参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知定义域为的函数为奇函数(1)求的值;(2)若对任意的正数,不等式恒成立,求的取值范围.参考答案:略19.(本小题满分12分)已知数列满足:,其中为的前n项和.(Ⅰ)求的通项公式;
(Ⅱ)若数列满足,求的前n项和Tn.参考答案:解:(Ⅰ)①当n=1时,,得
②当时,
……………………3′
所以,数列是以首项为,公比为的等比数列。
………………5′
(Ⅱ)∵∴
…①
………7′又
…②…8′
由①-②得:
……10′
………12′20.已知f(α)=(1)若α=﹣,求f(α)的值(2)若α为第二象限角,且cos(α﹣)=,求f(α)的值.参考答案:【考点】三角函数的化简求值.【分析】(1)利用诱导公式化简已知可得f(α)=cosα,从而利用诱导公式可求α=﹣时f(α)的值;(2)利用诱导公式可求sinα,进而根据同角三角函数基本关系式即可计算得解.【解答】解:(1)∵,…..∴(2)∵,∴.∵α为第二象限角,∴f(α)=cosα=﹣=﹣…21.在测试中,客观题难度的计算公式为,其中为第题的难度,为答对该题的人数,为参加测试的总人数,现对某校高三年级240名学生进行一次测试,共5道客观题,测试前根据对学生的了解,预估了每道题的难度,如下表所示:题号12345考前预估难度0.90.80.70.60.4测试后,随机抽取了20名学生的答题数据进行统计,结果如下:题号12345实测答对人数16161444(Ⅰ)根据题中数据,估计这240名学生中第5题的实测答对人数.(Ⅱ)从抽样的20名学生中随机抽取2名学生,记这2名学生中第5题答对的人数为,求的分布列和数学期望.(Ⅲ)试题的预估难度和实测难度之间会有偏差,设为第题的实测难度,请用和设计一个统计量,并制定一个标准来判断本次测试对难度的预估是否合理.参考答案:见解析(Ⅰ),∴人.(Ⅱ)可取,,,,,..(Ⅲ)定义为第题预估难度,且,则合理.∵,∴合理.22.已知集合A={x|0<2x+a≤
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年-2024年新入职员工安全教育培训试题附答案(培优B卷)
- 水利工程抗灾能力评估-洞察分析
- 2023年项目部治理人员安全培训考试题及答案(夺冠)
- 2024企业主要负责人安全培训考试题研优卷
- 物联网创业投资基金绩效评估-洞察分析
- 语义网络与-class融合-洞察分析
- 网络信息化教学研修心得体会
- 徐吾学校学习宣传新《安全生产法》活动计划
- 绿化施工防尘治理措施
- 施工机械设备投入计划及保证措施
- 北京联合大学《数据挖掘B》2023-2024学年第一学期期末试卷
- 2024年中国大数据企业排行榜V9.0(大数据产业白皮书)-中国民营科技促进会
- 2025年统编版高考政治一轮复习:选择性必修1、2、3共3册必背考点知识点汇编
- 货物交接单和交接合同
- 《灭火应急疏散预案》课件
- 【高分复习笔记】孙广仁《中医基础理论》(第9版)笔记与考研真题详解
- 开题报告:高质量数字教材建设机制及政策研究
- PE工程师工作总结
- 以案促改心得体会
- 华东师范大学《法学导论(Ⅰ)》2023-2024学年第一学期期末试卷
- 期末复习试题 (试卷)-2024-2025学年四年级上册数学人教版
评论
0/150
提交评论