下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省梅州市南口中学高二数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列叙述中错误的是(
). A.若且,则 B.三点,,确定一个平面C.若直线,则直线与能够确定一个平面D.若,且,,则参考答案:B当,,三点共线时不能确定一个平面,错误,故选.2.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的健康情况,用分层抽样方法从中抽取样本,若样本中青年职工为7人,则样本容量为
()A.7
B.15
C.25 D.35参考答案:B3.已知,函数的最小值是
(
)A.4
B.5
C.6
D.8
参考答案:A略4.已知a=21.2,b=()-0.9,c=2log52,则a,b,c的大小关系为A.c<b<a
B.c<a<b
C.b<a<c
D.b<c<a参考答案:A5.圆与圆的位置关系是(
) A.相离 B.外切 C.相交 D.内切参考答案:D解:圆为,圆为,两圆心分别为和,圆心距为,即两圆相交.故选.6.空间三条直线中的一条直线与其他两条都相交,那么由这三条直线最多可确定平面的个数是(
)个
A.1
B.2
C.3
D.4参考答案:C7.若椭圆交于A、B两点,过原点与线段AB中点连线的斜率为,则的值等于(
)A.
B.
C.
D.参考答案:D8.已知函数f(x)的导函数为f'(x),且满足f(x)=2xf'(1)+lnx,则=()A. B.e﹣2 C.﹣1 D.e参考答案:B【考点】63:导数的运算.【分析】利用求导法则求出f(x)的导函数,把x=1代入导函数中得到关于f′(1)的方程,求出方程的解,再带值即可得到f′()的值.【解答】解:函数f(x)的导函数为f'(x),且满足f(x)=2xf'(1)+lnx,∴f′(x)=2f'(1)+,∴f′(1)=2f'(1)+1,∴f′(1)=﹣1,∴=﹣2+e,故选:B9.原点到直线的距离为(
). A. B. C. D.参考答案:D到直线的距离.故选.10.如图,三棱锥中,平面,则下列结论中不一定成立的是(
)A.
B.C.
D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.根据下面一组等式:S1=1;S2=2+3=5;S3=4+5+6=15;S4=7+8+9+10=34;S5=11+12+13+14+15=65;S6=16+17+18+19+20+21=111;S7=22+23+24+25+26+27+28=175;……可得________.参考答案:12.若双曲线C的渐近线方程为y=±2x,且经过点(2,2),则C的标准方程为
.参考答案:【考点】双曲线的简单性质;双曲线的标准方程.【分析】根据双曲线C的渐近线方程,设出双曲线的方程,代入点(2,2),即可求得C的标准方程.【解答】解:由题意,∵双曲线C的渐近线方程为y=±2x,∴设双曲线C的方程为y2﹣4x2=λ∵双曲线C经过点(2,2),∴8﹣16=λ∴λ=﹣8∴双曲线C的方程为y2﹣4x2=﹣8,即故答案为:13.已知,则
参考答案:2略14.Sn为数列{an}的前n项和,且Sn=n2﹣3n+3,则数列{an}的通项公式为an=.参考答案:【考点】数列递推式.【分析】利用递推关系n=1时,a1=S1;n≥2时,an=Sn﹣Sn﹣1.即可得出.【解答】解:n=1时,a1=S1=1;n≥2时,an=Sn﹣Sn﹣1=n2﹣3n+3﹣[(n﹣1)2﹣3(n﹣1)+3]=2n﹣4,∴an=.故答案为:.【点评】本题考查了数列的递推关系、通项公式,考查了推理能力与计算能力,属于中档题.15.已知球O是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A-BCD的外接球,BC=3,,点E在线段BD上,且BD=3BE,过点E作圆O的截面,则所得截面圆面积的取值范围是__.参考答案:【分析】设△BDC的中心为O1,球O的半径为R,连接oO1D,OD,O1E,OE,可得R2=3+(3﹣R)2,解得R=2,过点E作圆O的截面,当截面与OE垂直时,截面的面积最小,当截面过球心时,截面面积最大,即可求解.【详解】如图,设△BDC的中心为O1,球O的半径为R,连接oO1D,OD,O1E,OE,则,AO1在Rt△OO1D中,R2=3+(3﹣R)2,解得R=2,∵BD=3BE,∴DE=2在△DEO1中,O1E∴过点E作圆O的截面,当截面与OE垂直时,截面的面积最小,此时截面圆的半径为,最小面积为2π.当截面过球心时,截面面积最大,最大面积为4π.故答案为:[2π,4π]【点睛】本题考查了球与三棱锥的组合体,考查了空间想象能力,转化思想,解题关键是要确定何时取最值,属于中档题.16.已知倾斜角为α的直线l与直线x+2y﹣3=0垂直,则=.参考答案:【考点】三角函数的化简求值.【专题】计算题;转化思想;综合法;三角函数的求值.【分析】由直线垂直的性质求出tanα=2,由此利用同角三角函数关系式能求出的值.【解答】解:∵倾斜角为α的直线l与直线x+2y﹣3=0垂直,∴tanα=2,∴===.故答案为:.【点评】本题考查三角函数值的求法,是基础题,解题时要认真审题,注意三角函数性质的合理运用.17.设为平面内的个点,在平面内的所有点中,若点到点的距离之和最小,则称点为点的一个“中位点”.例如,线段上的任意点都是端点的中位点.现有下列命题:①若三个点共线,在线段上,则是的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是___________(写出所有真命题的序号).参考答案:①④略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.对于三次函数给出定义:设是函数的导数,是函数的导数,若方程有实数解,则称点为函数的“拐点”,某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心。给定函数,请你根据上面探究结果,计算=
.参考答案:2012略19.4月7日是世界健康日,成都某运动器材与服饰销售公司为了制定销售策略,在成都市随机抽取了40名市民对其每天的锻炼时间进行调查,锻炼时间均在20分钟至140分钟之间,根据调查结果绘制的锻炼时间(单位:分钟)的频率分布直方图如下图所示.(Ⅰ)根据频率分布直方图计算人们锻炼时间的中位数;(Ⅱ)在抽取的40人中从锻炼时间在[20,60]的人中任选2人,求恰好一人锻炼时间在[20,40]的概率.参考答案:20.已知函数.(1)当时,求函数的单调区间;(2)若函数有两个极值点,,不等式恒成立,求实数的取值范围.参考答案:(1)时,,定义域为,.∴时:,时,,∴的单调增区间为,单调减区间为(2)函数在上有两个极值点,.由.得,当,时,,,,则,∴.由,可得,,,令,则,
因为.,,又.
所以,即时,单调递减,所以,即,
故实数的取值范围是.21.(本小题满分12分)在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024带小孩保姆的合同范本
- 2023年单、双长链烷基甲基叔胺项目评价分析报告
- 2024年聚苯硫醚(PPS)及合金项目评价分析报告
- 2024至2030年中国钓鱼长裤数据监测研究报告
- 2024年结构化布线系统的检测设备项目评价分析报告
- 2024至2030年中国磷化铝熏蒸杀虫剂数据监测研究报告
- 2024至2030年中国灯具制品行业投资前景及策略咨询研究报告
- 2024至2030年中国气动拉铆栓数据监测研究报告
- 2024至2030年中国手持式温度检测仪数据监测研究报告
- 2024至2030年中国安适行业投资前景及策略咨询研究报告
- 幼儿园小朋友认识医生和护士(课堂PPT)
- 汽车总线测试方案概要
- 商铺装修工程施工方案.
- 形式发票样本(Proforma Invoice)
- 草坪铺设施工方案
- 临床路径实施情况、存在问题及整改措施
- (完整word版)上海博物馆文物术语中英文对照
- 学、练、评一体化课堂模式下赛的两个问题与对策
- 陕西省尾矿资源综合利用
- 扣件式钢管脚手架施工方案(课程设计,含计算书)
- 常见药品配伍表
评论
0/150
提交评论