下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省梅州市兴梅中学2022年高一数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数f(x)=的最小正周期为A. B. C.2 D.4参考答案:D略2.下列指数式与对数式互化不正确的一组是()A.e0=1与ln1=0; B.8=2与log82=C.log39=2与9=3 D.log33=1与31=3参考答案:C【考点】指数式与对数式的互化.
【专题】函数的性质及应用.【分析】利用指数式与对数式互化的方法即可判断出.【解答】解:A.e0=1与ln1=0,正确;B.8=2与log82=,正确;C.log39=2应该化为32=9,不正确;D.log33=1与31=3,正确.故选:C.【点评】本题考查了指数式与对数式互化,考查了计算能力,属于基础题.3.设,用二分法求方程在内近似解的过程中得,,则方程的根落在区间(
)
参考答案:D4.设集合,,,则A.
B.
C.
D.
参考答案:B5.三棱锥P﹣ABC中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,则三棱锥P﹣ABC的体积等于()A.3 B. C.2 D.4参考答案:B【考点】棱柱、棱锥、棱台的体积.【专题】计算题;规律型;转化思想;空间位置关系与距离.【分析】由题意求出底面面积,然后求出三棱锥的体积.【解答】解:三棱锥P﹣ABC中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,所以底面面积为:;三棱锥的体积为:××3=故选:B.【点评】本题是基础题,考查三棱锥的体积的计算,注意三棱锥的特征是解题的关键.6.已知,,且,则x=(
)A.9 B.-9 C.1 D.-1参考答案:A【分析】利用向量共线定理,得到,即可求解,得到答案.【详解】由题意,向量,,因为向量,所以,解得.故选:A.【点睛】本题考查了向量的共线定理的坐标运算,其中解答中熟记向量的共线定理的坐标运算是解答的关键,着重考查了运算与求解能力,属于基础题.7.若a,b,c∈R,且a>b,则下列不等式一定成立的是()A.a+c≥b﹣cB.ac>bcC.>0D.(a﹣b)c2≥0参考答案:B8.设函数f(x)=|x|,g(x)=lg(ax2﹣4x+1),若对任意x1∈R,都存在在x2∈R,使f(x1)=g(x2),则实数a的取值范围是()A.(﹣∞,4] B.(0,4] C.(﹣4,0] D.[0,+∞)参考答案:D【考点】函数的值域;函数的图象.【分析】由题意求出f(x)的值域,再把对任意x1∈R,都存在x2∈R,使f(x1)=g(x2)转化为函数g(x)的值域包含f(x)的值域,进一步转化为关于a的不等式组求解.【解答】解:?x1∈R,f(x)=|x|∈[0,+∞),∵?x2∈R,使f(x1)=g(x2),∴g(x)=lg(ax2﹣4x+1)的值域包含[0,+∞),当a=0时,g(x)=lg(﹣4x+1),显然成立;当a≠0时,要使g(x)=lg(ax2﹣4x+1)的值域包含[0,+∞),则ax2﹣4x+1的最小值小于等于1,∴,即a>0.综上,a≥0.∴实数a的取值范围是[0,+∞).故选:D.9.函数f(x)=+lg(x+2)的定义域为(
)A.(﹣2,1) B.(﹣2,1] C.[﹣2,1) D.[﹣2,﹣1]参考答案:B【考点】函数的定义域及其求法;对数函数的定义域.【专题】计算题.【分析】根据题意可得,解不等式可得定义域.【解答】解:根据题意可得解得﹣2<x≤1所以函数的定义域为(﹣2,1]故选B【点评】本题考查了求函数的定义域的最基本的类型①分式型:分母不为0②对数函数:真数大于0,求函数定义域的关键是根据条件寻求函数有意义的条件,建立不等式(组),进而解不等式(组).10.设函数,若关于x的方程f2(x)+bf(x)+c=0恰有5个不同的实数解x1,x2,x3,x4,x5,则f(x1+x2+x3+x4+x5)等于(
)(A)0 (B)2lg2 (C)3lg2 (D)1参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知=,(<θ<π),则=
。参考答案:12.如图,四棱锥S﹣ABCD中,底面ABCD为平行四边形,E是SA的上一点,当点E满足条件
,时,SC∥平面EBD,写出条件并加以证明.参考答案:SE=EA【考点】直线与平面平行的判定.【分析】欲证SC∥平面EBD,根据直线与平面平行的判定定理可知只需证SC与平面EBD内一直线平行,取SA的中点E,连接EB,ED,AC,设AC与BD的交点为O,连接EO.根据中位线可知OE∥SC,而SC?平面EBD,OE?平面EBD,满足定理所需条件.【解答】答:点E的位置是棱SA的中点.证明:取SA的中点E,连接EB,ED,AC,设AC与BD的交点为O,连接EO.∵四边形ABCD是平行四边形,∴点O是AC的中点.又E是SA的中点,∴OE是△SAC的中位线.∴OE∥SC.∵SC?平面EBD,OE?平面EBD,∴SC∥平面EBD.故答案为SE=EA.13.若关于的方程在上有实数根,则实数的取值范围是
.参考答案:略14.幂函数的图象过点,则的解析式是_____________。参考答案:
解析:,15.一货轮航行到M处测得灯塔S在货轮的北偏东相距20海里处,随后货轮按北偏西的方向航行,半小时后,又测得灯塔在货轮的北偏东处,则货轮航行的速度为
海里/小时.参考答案:海里/小时
16.已知,,,则的最小值为______.参考答案:4【分析】将所求的式子变形为,展开后可利用基本不等式求得最小值.【详解】解:,,,,当且仅当时取等号.故答案为:4.【点睛】本题考查了“乘1法”和基本不等式,属于基础题.由于已知条件和所求的式子都是和的形式,不能直接用基本不等式求得最值,使用“乘1法”之后,就可以利用基本不等式来求得最小值了.17.若直线l的斜率k的变化范围是,则l的倾斜角的范围为
.参考答案:[0,]∪[,π)【考点】直线的倾斜角.【分析】由直线的斜率范围,得到倾斜角的正切值的范围,利用正切函数的单调性并结合倾斜角的范围,最后确定倾斜角的具体范围.【解答】解:设直线的倾斜角为α,则α∈[0,π),由﹣1≤k≤,即﹣1≤tanα≤,当0<tanα≤,时,α∈[0,];当﹣1≤tanα<0时,α∈[,π),∴α∈[0,]∪[,π);故答案为∈[0,]∪[,π).三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某机械厂生产某种产品的年固定成本为250万元,每年生产x台,需另投入成本为C(x)(万元),当年产量不足80台时,(万元);当年产量不小于80台时,-1450(万元)。通过市场分析,若每台售价为50万元,该厂当年生产的该产品能全部销售完。(1)写出年利润L(x)(万元)关于年产量x(台)的函数解析式;(2)年产量为多少台时,该厂在这一产品的生产中所获利润最大,最大利润是多少?参考答案:解:(I)每生产台产品,收益为万元,由已知可得:
………………4分(II)当0<x<80时,∴当x=60时,L(x)取得最大值L(60)=950(万元);
………………7分当x≥80时,(万元)当且仅当,即x=100时,L(x)取得最大值L(100)=1000>950.………12分
综上所述,当x=100即年产量为100台时,L(x)取得最大值,该厂在这一产品的生产中所获利润最大,为1000万元.
…………13分
19.已知函数f(x)=(1)求f(f(-2))的值;(2)求f(a2+1)(a∈R)的值;(3)当-4≤x<3时,求函数f(x)的值域..参考答案:(1)∵f(-2)=1-2×(-2)=5,∴f(f(-2))=f(5)=4-52=-21.………………(3分)(2)∵当a∈R时,a2+1≥1>0,∴f(a2+1)=4-(a2+1)2=-a4-2a2+3(a∈R).…………(7分)(3)①当-4≤x<0时,∵f(x)=1-2x,∴1<f(x)≤9.②当x=0时,f(0)=2.③当0<x<3时,∵f(x)=4-x2,∴-5<f(x)<4.故当-4≤x<3时,函数f(x)的值域是(-5,9].…………(12分)20.数列的前n项和记为,点(n,)在曲线()上(1)求数列的通项公式;(2)设,求数列的前n项和的值参考答案:(1)由条件得()当当也适合为通项公式(2)、2两式相减得,解得21.已知A={x|2x2+ax+2=0},B={x|x2+3x﹣b=0},且A∩B={2}.(1)求a,b的值;(2)设全集U=AUB,求(?UA)U(?UB).参考答案:【考点】交、并、补集的混合运算.【分析】(1)根据A与B的交集中元素2,代入A与B的方程中计算即可求出a与b的值;(2)把a与b的值代入确定出A与B,即可求出A补集与B补集的交集.【解答】解:(1)把x=2代入A中方程得:8+2a+2=0,解得:a=﹣5,把x=2代入B中方程得:4+6﹣b=0,解得:b=10;(2)由(1)得:A={,2},B={﹣5,2},∴全集U=A∪B={﹣5,,2},∴?UA={﹣5},?UB={},则(?UA)U(?UB)={﹣5,}.22.已知二次函数f(x)=x2﹣2x+3(Ⅰ)若函数y=f(log3x+m),x∈[,3]的最小值为3,求实数m的值;(Ⅱ)若对任意互不相同的x1,x2∈(2,4),都有|f(x1)﹣f(x2)|<k|x1﹣x2|成立,求实数k的取值范围.参考答案:【考点】二次函数的性质.【分析】(Ⅰ)令t=log3x,(﹣1≤t≤1),则y=(t+m﹣1)2+2,由题意可得最小值只能在端点处取得,分别求得m的值,加以检验即可得到所求值;(Ⅱ)判断f(x)在(2,4)递增,设x1>x2,则f(x1)>f(x2),原不等式即为f(x1)﹣f(x2)<k(x1﹣x2),即有f(x1)﹣kx1<f(x2)﹣kx2,由题意可得g(x)=f(x)﹣kx在(2,4)递减.由g(x)=x2﹣(2+k)x+3,求得对称轴,由二次函数的单调区间,即可得到所求范围【解答】解(Ⅰ)令t=log3x+m,∵,∴t∈[m﹣1,m+1],从而y=f(t)=t2﹣2t+3=(t﹣1)2+2,t∈[m﹣1,m+1]当m+1≤1,即m≤0时,,解得m=﹣1或m=1(舍去),当m﹣1<1<m+1,即0<m<2时,ymin=f(1)=2,不合题意,当m﹣1≥1,即m≥2时,,解得m=3或m=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工地建材供货合同范例
- 纠正错字课程设计
- 天府新区信息职业学院《侵权法律实务》2023-2024学年第一学期期末试卷
- 天府新区信息职业学院《礼仪与形象塑造》2023-2024学年第一学期期末试卷
- 招商结算合同范例
- 工厂配件合同范例
- 招工修理合同范例
- 法院垫资合同范例
- 物业企业服务合同范例
- 定金合同范例车
- 论英语学科核心素养中的思维品质及其发展途径
- 殡葬行业的风险分析
- 下肢静脉血栓个案查房
- 《腰椎穿刺术》课件
- 北京市朝阳区2023-2024学年七年级上学期期末检测语文试卷+
- 拆迁赔偿保密协议
- 四年级艺术测评美术素养考试试题
- 办税服务外包投标方案(完整版)
- 电动葫芦作业吊装施工方案
- 一方出资金一方出资源合作协议范本
- 兔的饲养管理与疾病防治
评论
0/150
提交评论