下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省揭阳市英才实验中学2023年高二数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设集合,,则下列关系中正确的是(
)A.
B.
C.
D.参考答案:B略2.已知有穷数列2,3,,满足2,3,,,且当2,3,,时,若,则符合条件的数列{an}的个数是
A. B. C. D.参考答案:A【分析】先选出三个数确定为,其余三个数从剩下的7个里面选出来,排列顺序没有特殊要求.【详解】先确定,相当于从10个数值中选取3个,共有种选法,再从剩余的7个数值中选出3个作为,共有种选法,所以符合条件的数列的个数是,故选A.【点睛】本题主要考查利用排列组合的知识确定数列的个数,有无顺序要求,是选择排列还是组合的依据.3.两圆x2+y2=9和x2+y2﹣8x+6y+9=0的位置关系是()A.相离 B.相交 C.内切 D.外切参考答案:B【考点】圆与圆的位置关系及其判定.【专题】综合题.【分析】分别由两圆的方程找出两圆心坐标和两个半径R和r,然后利用两点间的距离公式求出两圆心的距离d,比较d与R﹣r及d与R+r的大小,即可得到两圆的位置关系.【解答】解:把x2+y2﹣8x+6y+9=0化为(x﹣4)2+(y+3)2=16,又x2+y2=9,所以两圆心的坐标分别为:(4,﹣3)和(0,0),两半径分别为R=4和r=3,则两圆心之间的距离d==5,因为4﹣3<5<4+3即R﹣r<d<R+r,所以两圆的位置关系是相交.故选B.【点评】此题考查学生掌握两圆的位置关系的判别方法,利用运用两点间的距离公式化简求值,是一道综合题.4.南北朝时期的数学家祖冲之,利用“割圆术”得出圆周率的值在3.1415926与3.1415927之间,成为世界上第一个把圆周率的值精确到7位小数的人,他的这项伟大成就比外国数学家得出这样精确数值的时间至少要早一千年,创造了当时世界上的最高水平,我们用概率模型方法估算圆周率,向正方形及内切圆随机投掷豆子,在正方形中的400颗豆子中,落在圆内的有316颗,则估算圆周率的值为(
)A.3.13
B.3.14
C.3.15
D.3.16参考答案:D设圆的半径为1,则正方形的边长为2,根据几何概型的概率公式,可以得到,解得,故选D.
5.下列式子中不能表示函数y=f(x)的是().A.x=y2+1
B.y=2x2+1C.x-2y=6
D.x=参考答案:A6.若函数的导函数为,则的解集为(
)
A.
B.
C.
D.参考答案:C7.若函数有极值,则导数的图象可能是()A.
B.
C.
D.参考答案:B若函数有极值点x0,则函数f′(x)有零点,且在零点左右两侧异号,由函数图象可知,B选项符合题意,故选:B
8.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三向量共面,则实数λ等于()A.
B.
C.
D.参考答案:D∵a、b、c三向量共面,所以存在实数m、n,使得c=ma+nb.即∴λ=.9.复数的值是(
)A.
B.
C.
D.参考答案:D10.抛物线上一点M到焦点的距离为1,则点M的纵坐标是(
)A.
B.
C.
D.
参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.甲组有5名男同学,3名女同学;乙组有6名男同学,2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有
种.参考答案:345【考点】D9:排列、组合及简单计数问题.【分析】因为选出的4人中恰有1名女同学,这一女同学可能是从甲组中选,也可能是从乙组中选,所以可按分类计数原理,按女学生从那一组中选分成两类,把每一类方法数求出,再相加即可.【解答】解:分两类,第一类,甲组选1名男同学,1名女同学,乙组选2名男同学,有C51C31C62=225第二类,甲组选2名男同学,乙组选1名男同学,1名女同学,有C52C61C21=120∴共有225+120=345种.故答案为:345.【点评】本体主要考查了分类计数原理在组合问题中的应用,注意分类要不重不漏.12.联考过后,夷陵中学要筹备高二期中考试分析会,要安排七校七个高二年级主任发言,其中襄阳五中与钟祥一中的主任安排在夷陵中学主任后面发言,则可安排不同的发言顺序共有___________________(用数字作答)种。参考答案:13.已知sinα=,则cosα=
;tanα=
.参考答案:,考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:由sinα的值及α的范围,利用同角三角函数间的基本关系求出cosα的值,进而求出tanα的值.解答: 解:∵sinα=,α∈(0,),∴cosα==;tanα==.故答案为:;点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.14.在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:编号n12345成绩xn7376767772则这6位同学成绩的方差是
▲
.参考答案:略15.若实数满足,则的最大值为_______,最小值为______
.参考答案:16.将某班的60名学生编号为:01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是________.参考答案:16,28,40,52解析由于从60个中抽取5个,故分组的间距为12,又第一组的号码为04,所以其他四个号码依次是16,28,40,52.答案16,28,40,5217.运行下面的程序框图,最后输出结果为_______.参考答案:55【分析】由题得该程序框图表示的是1+2+3++10,求和即得解.【详解】由题得S=1+2+3++10=55.故答案为:55【点睛】本题主要考查程序框图,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分14分)如图,在中,,斜边.可以通过以直线为轴旋转得到,且二面角是直二面角.动点在斜边上.(1)求证:平面平面;(2)设与平面所成角的最大值为,求值.参考答案:19.在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于不同的A、B两点.(Ⅰ)如果直线l过抛物线的焦点,求·的值;(Ⅱ)如果·=-4,证明直线l必过一定点,并求出该定点.参考答案:略20.(12分)在中,角对的边分别为,且(Ⅰ)求的值;(Ⅱ)若,求的面积参考答案:(2)由余弦定理得c2=a2+b2﹣2abcosC,即4=a2+b2﹣ab=(a+b)2﹣3ab,又a+b=ab,所以(ab)2﹣3ab﹣4=0,
…(8分)解得ab=4或ab=﹣1(舍去)
…(10分)21.已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且=λ(0<λ<1).(Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC;(Ⅱ)当λ为何值时,平面BEF⊥平面ACD?参考答案:【考点】平面与平面垂直的判定;直线与平面垂直的性质.【专题】证明题.【分析】(Ⅰ)由AB⊥平面BCD?AB⊥CD,又CD⊥BC?CD⊥平面ABC,再利用条件可得不论λ为何值,恒有EF∥CD?EF?平面BEF,就可得不论λ为何值恒有平面BEF⊥平面ABC.(Ⅱ)由(Ⅰ)知,BE⊥EF,又平面BEF⊥平面ACD?BE⊥平面ACD?BE⊥AC.故只须让所求λ的值能证明BE⊥AC即可.在△ABC中求出λ的值.【解答】证明:(Ⅰ)∵AB⊥平面BCD,∴AB⊥CD,∵CD⊥BC且AB∩BC=B,∴CD⊥平面ABC.又∵,∴不论λ为何值,恒有EF∥CD,∴EF⊥平面ABC,EF?平面BEF,∴不论λ为何值恒有平面BEF⊥平面ABC.(Ⅱ)由(Ⅰ)知,BE⊥EF,又∵平面BEF⊥平面ACD,∴BE⊥平面ACD,∴BE⊥AC.∵BC=CD=1,∠BCD=90°,∠ADB=60°,∴,∴,由AB2=AE?AC得,∴,故当时,平面BEF⊥平面ACD.【点评】本题考查了面面垂直的判定.在证明面面垂直时,其常用方法是在其中一个平面内找两条相交直线和另一平面内的某一条直线垂直.22.已知函数.(1)若函数的图象与直线相切,求m的值;(2)求在区间[1,2]上的最小值;(3)若函数有两个不同的零点x1,x2,试求实数m的取值范围.参考答案:解:(1)设切点,因切线方程为,所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度杭州市民住宅转租合同2篇
- 二零二五年度无人机农药喷洒与农业科技推广合同3篇
- 二零二五年度幼儿园幼儿教育咨询服务合同2篇
- 2025年度建筑行业劳动用工合同标准3篇
- 二零二五年度医院护理工护理工作流程优化合同3篇
- 2025年度卫浴安装与智能家居系统集成与运维服务合同3篇
- 2025年度猪肉品牌形象设计与品牌推广合同3篇
- 2025年度网络安全产品研发借款合同2篇
- 养殖场土地租赁合同(二零二五年度)农业观光旅游合作3篇
- 二零二五年度新能源汽车全款购车合同模板3篇
- 浙江省杭州市钱塘区2023-2024学年四年级上学期数学期末试卷
- 《湖北省市政基础设施工程质量标准化图册》(燃气管网工程)
- 天车租赁合同范例
- 无机化学实验试题
- 第二单元《第8课循环结构-for循环》教学实录 -2023-2024学年浙教版(2020)初中信息技术八年级上册
- 2025年中考道德与法治二轮复习:主观题 答题模板与技巧(含练习题及答案)
- 衡重式及重力式挡土墙自动计算表
- 有关大学生寒假生活计划-大学生的寒假计划
- 2024年01月11129土木工程力学(本)期末试题答案
- 家政公司员工合同范例
- 2025年度安全培训计划
评论
0/150
提交评论