下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省揭阳市大溪中学2021年高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在△ABC中,,,,则(
)A. B. C. D.1参考答案:B【分析】由正弦定理可得,则,即可求解.【详解】由正弦定理可得,则,故选B.【点睛】本题主要考查了正弦定理的应用,其中解答中熟记正弦定理,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.2.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A、B的距离之比为定值的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆在平面直角坐标系xOy中,点.设点P的轨迹为C,下列结论正确的是()A.C的方程为B.在x轴上存在异于A、B的两定点D、E,使得C.当A、B、P三点不共线时,射线PO是的平分线D.在C上存在点M,使得参考答案:BC【分析】通过设出点P坐标,利用即可得到轨迹方程,找出两点即可判断B的正误,设出点坐标,利用与圆的方程表达式解出就存在,解不出就不存在.【详解】设点,则,化简整理得,即,故A错误;当时,,故B正确;对于C选项,,,要证PO为角平分线,只需证明,即证,化简整理即证,设,则,,则证,故C正确;对于D选项,设,由可得,整理得,而点M在圆上,故满足,联立解得,无实数解,于是D错误.故答案为BC.【点睛】本题主要考查阿氏圆的相关应用,轨迹方程的求解,意在考查学生的转化能力,计算能力,难度较大.3.函数的图象如图,则的解析式
的值分别为
A.
B.
C.
D.参考答案:C4.函数的定义域是(
)A.
B.
C.
D.参考答案:
D
解析:5.已知,,且,则x=(
)A.9 B.-9 C.1 D.-1参考答案:A【分析】利用向量共线定理,得到,即可求解,得到答案.【详解】由题意,向量,,因为向量,所以,解得.故选:A.【点睛】本题考查了向量的共线定理的坐标运算,其中解答中熟记向量的共线定理的坐标运算是解答的关键,着重考查了运算与求解能力,属于基础题.6.直线的方程的斜率和它在轴与轴上的截距分别为(
)A
B
C
D
参考答案:A7.已知全集U={小于10的正整数},集合M={3,4,5},P={1,3,6,9},则集合{2,7,8}=
(
)(A)
(B)
(C)
(D)参考答案:B略8.设,其中
()
A.4
B.3
C.-5
D.5参考答案:C略9.已知,则f(﹣1)+f(4)的值为()A.﹣7 B.﹣8 C.3 D.4参考答案:C【考点】函数的值.【分析】先判断出﹣1和4所在位置,在代入对应的解析式求值即可.【解答】解:因为;,∴f(﹣1)=﹣(﹣1)2+3×(﹣1)=﹣4;f(4)=2×4﹣1=7.∴f(﹣1)+f(4)=3.故选:C.10.若,则=(
)
A.
B.2
C.―
D.―2参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.某单位招聘员工,有名应聘者参加笔试,随机抽查了其中名应聘者笔试试卷,统计他们的成绩如下表:分数段人数1366211若按笔试成绩择优录取名参加面试,由此可预测参加面试的分数线为
分
参考答案:80
可预测参加面试的分数线为分
12.已知幂函数y=f(x)的图象过点(2,),则f(9)=
.参考答案:3【考点】幂函数的单调性、奇偶性及其应用.【专题】计算题.【分析】先由幂函数的定义用待定系数法设出其解析式,代入点的坐标,求出幂函数的解析式,再求f(16)的值【解答】解:由题意令y=f(x)=xa,由于图象过点(2,),得=2a,a=∴y=f(x)=∴f(9)=3.故答案为:3.【点评】本题考查幂函数的单调性、奇偶性及其应用,解题的关键是熟练掌握幂函数的性质,能根据幂函数的性质求其解析式,求函数值.13.将一张坐标纸折叠一次,使点点重合,则与点重合的点的坐标是________.参考答案:(10,1)略14.给定函数y=f(x),设集合A={x|y=f(x)},B={y|y=f(x)}.若对于?x∈A,?y∈B,使得x+y=0成立,则称函数f(x)具有性质P.给出下列三个函数:①;②;③y=lgx.其中,具有性质P的函数的序号是_____.参考答案:①③【分析】A即为函数的定义域,B即为函数的值域,求出每个函数的定义域及值域,直接判断即可.【详解】对①,A=(﹣∞,0)∪(0,+∞),B=(﹣∞,0)∪(0,+∞),显然对于?x∈A,?y∈B,使得x+y=0成立,即具有性质P;对②,A=R,B=(0,+∞),当x>0时,不存在y∈B,使得x+y=0成立,即不具有性质P;对③,A=(0,+∞),B=R,显然对于?x∈A,?y∈B,使得x+y=0成立,即具有性质P;故答案为:①③.【点睛】本题以新定义为载体,旨在考查函数的定义域及值域,属于基础题.15.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于20尺,该女子所需的天数至少为
.参考答案:716.若函数(>0且≠1)的值域为,则实数的取值范围是________________.参考答案:或17.若球O内切于棱长为2的正方体,则球O的表面积为
.参考答案:4π【考点】球的体积和表面积.【分析】棱长为2的正方体的内切球的半径r=1,由此能求出其表面积.【解答】解:棱长为2的正方体的内切球的半径r=1,表面积=4πr2=4π.故答案为4π.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知偶函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1,x2都有,且当时,(1)f(x)在(0,+∞)上是增函数;
(2)解不等式参考答案:解:(1)设,则∵,∴,∴,即,∴∴在上是增函数6分(2),∴,∵是偶函数∴不等式可化为,又∵函数在上是增函数,∴0≠,解得:略19.(本小题满分13分)已知为坐标原点,=(),=(1,),
.(1)若的定义域为[-,],求y=的单调递增区间;(2)若的定义域为[,],值域为[2,5],求的值.参考答案:(1)∵===……(4分)由(k∈Z),得在上的单调递增区间为(k∈Z),(其它情况可酌情给分)又的定义域为[-,],∴的增区间为:[,],[,]……(7分)(2)当≤x≤时,,∴,∴1+m≤≤4+m,∴m=1……(13分)20.(本小题满分12分)已知是奇函数.(1)求的值;(2)判断并证明在上的单调性;(3)若关于的方程在上有解,求的取值范围.参考答案:(1)因为是奇函数,故对定义域内的x,都有即,即,于是.…3分(2)在上的单调递减..……………………2分对任意的故即在上的单调递减...……………………3分(3)解法一:方程可化为:,令于是在上有解………..2分设(1)在上有两个零点(可重合),令无解.(2)在上有1个零点,令,得综上得……………………2分解法二:方程可化为:,令于是,………..2分则的值域为,故.…………2分21.(12分)如图所示的三个图中,左边的是一个长方体截去一个角所得多面体的直观图.另外两个是它的正视图和左视图(单位:cm)(Ⅰ)按照画三视图的要求画出该多面体的俯视图;(Ⅱ)按照给出的尺寸,求该多面体的体积;(Ⅲ)在所给直观图中连结BC′,证明:BC′∥面EFG.参考答案:考点: 直线与平面平行的判定;由三视图求面积、体积.专题: 空间位置关系与距离.分析: (Ⅰ)由已知条件按三视图的要求能画出该多面体的俯视图.(Ⅱ)所求多面体体积V=V长方体﹣V正三棱锥,由此能求出结果.(Ⅲ)连结AD',则AD'∥BC',AD'∥EG,从而EG∥BC'.由此能证明BC'∥面EFG.解答: 解:(Ⅰ)如图,画出该多面体的俯视图如下:(Ⅱ)所求多面体体积:V=V长方体﹣V正三棱锥==.(Ⅲ)证明:在长方体ABCD﹣A'B'C'D'中,连结AD',则AD'∥BC'.因为E,G分别为AA',A'D'中点,所以AD'∥EG,从而EG∥BC'.又BC'?平面EFG,所以BC'∥面EFG.点评: 本题考查几何体的俯视图的作法,考查多面体的体积的求法,考查直线与平面平行的证明,解题时要认真审题,注意空间思维能力的培养.22.(Ⅰ)函数f(x)满足对任意的实数x,y都有f(xy)=f(x)+f(y),且f(4)=2,求f()的值;(Ⅱ)已知函数f(x)是定义在[﹣1,1]上的奇函数,且f(x)在[﹣1,1]上递增,求不等式f(x+)+f(x﹣1)<0的解集.参考答案:【考点】抽象函数及
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 探索学前儿童心理抗压能力的家庭教育策略
- 教育空间的个性化艺术设计策略探讨
- 办公室文化构建与企业效率提升研究
- 金融科技普惠贷款合作协议
- 食堂蔬菜等食材的采购合同
- 施工降水井劳务分包合同
- 仓库场地租赁合同范本年
- 对接国际金融市场中国银行业中引入对冲基金的前景分析
- 牛羊买卖合同范本
- 教育型小区的绿色建设之路
- 《飞机操纵面》课件
- 商业咨询报告范文大全
- 自我发展与团队管理课件
- 《妇产科学》课件-17.盆腔器官脱垂
- 监理报告范本
- 店铺交割合同范例
- 大型活动LED屏幕安全应急预案
- 2024年内蒙古包头市中考道德与法治试卷
- 湖南省长沙市2024-2025学年高二上学期期中考试地理试卷(含答案)
- 自来水质量提升技术方案
- 金色简约蛇年年终总结汇报模板
评论
0/150
提交评论