广东省广州市民航子弟学校中学部2021年高一数学理下学期期末试卷含解析_第1页
广东省广州市民航子弟学校中学部2021年高一数学理下学期期末试卷含解析_第2页
广东省广州市民航子弟学校中学部2021年高一数学理下学期期末试卷含解析_第3页
广东省广州市民航子弟学校中学部2021年高一数学理下学期期末试卷含解析_第4页
广东省广州市民航子弟学校中学部2021年高一数学理下学期期末试卷含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省广州市民航子弟学校中学部2021年高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.sin20°cos40°+cos20°sin40°的值等于(

)A.

B.

C.

D.参考答案:B略2.若数列、的通项公式分别是,,且,对任意恒成立,则常数的取值范围是(

)A.

B.

C.

D.参考答案:A3.下图是由哪个平面图形旋转得到的

A

B

C

D参考答案:A4.对于函数f(x)=cos(π+x),下列说法正确的是()A.奇函数 B.偶函数 C.增函数 D.减函数参考答案:A【考点】3K:函数奇偶性的判断.【分析】化简f(x),根据正弦函数的性质判断即可.【解答】解:f(x)=cos(π+x)=sinx,故f(x)是奇函数,故选:A.5.在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥CD,且AB=3,BD=4,则三棱锥A﹣BCD外接球的半径为()A.2 B.3 C.4 D.参考答案:D【考点】球内接多面体.【专题】计算题;空间位置关系与距离.【分析】取AD的中点O,连结OB、OC.由线面垂直的判定与性质,证出AB⊥BD且AC⊥CD,得到△ABD与△ACD是具有公共斜边的直角三角形,从而得出OA=OB=OC=OD=AD,所以A、B、C、D四点在以O为球心的球面上,再根据题中的数据利用勾股定理算出AD长,即可得到三棱锥A﹣BCD外接球的半径大小.【解答】解:取AD的中点O,连结OB、OC∵AB⊥平面BCD,CD?平面BCD,∴AB⊥CD,又∵BC⊥CD,AB∩BC=B,∴CD⊥平面ABC,∵AC?平面ABC,∴CD⊥AC,∵OC是Rt△ADC的斜边上的中线,OC=AD.同理可得:Rt△ABD中,OB=AD,∴OA=OB=OC=OD=AD,可得A、B、C、D四点在以O为球心的球面上.Rt△ABD中,AB=3且BD=4,可得AD==5,由此可得球O的半径R=AD=,即三棱锥A﹣BCD外接球的半径为.故选:D【点评】本题已知三棱锥的底面为直角三角形,由它的外接球的半径.着重考查了线面垂直的判定与性质、勾股定理与球内接多面体等知识,属于中档题.6.已知,则使得都成立的x的取值范围是(▲)A. B.

C.

D.参考答案:B7.已知下列命题:⑴;⑵;⑶;其中真命题的个数是

A.1个

B.2个

C.3个

D.4个参考答案:B略8.(5分)已知函数若f(2﹣a2)>f(a),则实数a的取值范围是() A. (﹣∞,﹣1)∪(2,+∞) B. (﹣1,2) C. (﹣2,1) D. (﹣∞,﹣2)∪(1,+∞)参考答案:C考点: 函数单调性的性质;其他不等式的解法.专题: 函数的性质及应用.分析: 由题义知分段函数求值应分段处理,利用函数的单调性求解不等式.解答: 由f(x)的解析式可知,f(x)在(﹣∞,+∞)上是单调递增函数,在由f(2﹣a2)>f(a),得2﹣a2>a即a2+a﹣2<0,解得﹣2<a<1.故选C点评: 此题重点考查了分段函数的求值,还考查了利用函数的单调性求解不等式,同时一元二次不等式求解也要过关.9.函数的图象是(

A

B

C

D参考答案:C略10.设(

)A.2

B.1

C.2

D.3参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.不等式的解集是.参考答案:(﹣4,2)【考点】其他不等式的解法.【分析】由不等式可得(x﹣2)(x+4)<0,解此一元二次不等式求得原不等式的解集.【解答】解:由不等式可得<0,即(x﹣2)(x+4)<0,解得﹣4<x<2,故不等式的解集为(﹣4,2),故答案为(﹣4,2).12..已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.参考答案:(3,+∞)【考点】根的存在性及根的个数判断.【分析】作出函数f(x)=的图象,依题意,可得4m﹣m2<m(m>0),解之即可.【解答】解:当m>0时,函数f(x)=的图象如下:∵x>m时,f(x)=x2﹣2mx+4m=(x﹣m)2+4m﹣m2>4m﹣m2,∴y要使得关于x的方程f(x)=b有三个不同的根,必须4m﹣m2<m(m>0),即m2>3m(m>0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞).13.________.参考答案:6【知识点】对数与对数函数指数与指数函数【试题解析】

故答案为:614.设指数函数是上的减函数,则的取值范围是

.参考答案:略15.设函数的定义域为A,集合B,若,则实数m的取值范围是________________

参考答案:略16.数列{an}中,Sn是其前n项和,若a1=1,an+1=3Sn(n∈N*),则a4=________。参考答案:48

17.方程的两根均大于1,则实数的范围是

.参考答案:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(10分)已知:求值:(I); (II)参考答案:(I)

--------------------------------------------5分(II)=------10分19.已知函数。(1)求的定义域;(2)判定的奇偶性;(3)是否存在实数,使得的定义域为时,值域为?若存在,求出实数的取值范围;若不存在,请说明理由。参考答案:解:(1)

(2)

(3)

的方程。

略20.(12分)已知⊙M:(x+1)2+y2=1,⊙N:(x﹣1)2+y2=9,动圆P与⊙M外切并且与⊙N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与⊙P、⊙M都相切的一条直线,当⊙P的半径最长时,求直线l的方程.参考答案:考点: 轨迹方程;圆的切线方程.专题: 计算题;直线与圆.分析: (1)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(2)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,确定Q(﹣4,0),设l:y=k(x+4),由l与M相切,可得结论.解答: (1)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(去掉点(﹣2,0))(2)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0),R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,直线l的方程为x=0.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则=,可得Q(﹣4,0),所以可设l:y=k(x+4),由l与M相切可得:=1,解得k=±.∴直线l的方程为y=±(x+4),综上可知,直线l的方程为y=±(x+4)或x=0.点评: 本题综合考查了两圆的相切关系、直线与圆相切等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.已知,(1)求的值

(2)求的值

参考答案:解:(1)…………6分

(2)

…………12分

略22.游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C;另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,,.(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?参考答案:解:(1)∵,∴∴,∴根据得(2)设乙出发t分钟后,甲.乙距离为d,则∴∵即∴时,即乙出发分钟后,乙在缆车上与甲的距离最短。(3)由正弦定理得(m)乙从B出发时,甲已经走了50(2+8+1)=550(m),还需走710

m

才能到达C设乙的步行速度为V,则∴∴∴为使两位游客在处互相等待的时间不超过分钟,乙步行的速度应控制在范围内法二:解:(1)如图作BD⊥CA于点D,设BD=20k,则DC=25k,AD=48k,AB=52k,由AC=63k=1260m,知:AB=52k=1040m.(2)设乙出发x分钟后到达点M,此时甲到达N点,如图所示.则:AM=130x,AN=50(x+2),由余弦定理得:MN2=AM2+AN2-2AM·ANcosA=7400

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论