广东省广州市同和中学2021年高一数学理上学期期末试卷含解析_第1页
广东省广州市同和中学2021年高一数学理上学期期末试卷含解析_第2页
广东省广州市同和中学2021年高一数学理上学期期末试卷含解析_第3页
广东省广州市同和中学2021年高一数学理上学期期末试卷含解析_第4页
广东省广州市同和中学2021年高一数学理上学期期末试卷含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省广州市同和中学2021年高一数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.直线与在同一直角坐标系中的图象可能是 A B C D参考答案:C2.已知,,,则的大小关系是

()

A.

B.

C.

D.参考答案:D略3.有一块半径为(是正常数)的半圆形空地,开发商计划征地建一个矩形的游泳池和其附属设施,附属设施占地形状是等腰,其中为圆心,,在圆的直径上,,,在半圆周上,如图.设,征地面积为,当满足取得最大值时,开发效果最佳,开发效果最佳的角和的最大值分别为(

)A.

B.

C.

D.参考答案:B4.若,则的终边在(

)A.第一象限 B.第一或第四象限

C.第一或第三象限 D.第四象限参考答案:B略5.sin600+tan240的值是(

A.―

B.

C..

D.参考答案:B略6.下列角中终边与330°相同的角是

)A.30°

B.-30°

C.630°

D.-630°参考答案:B略7.化简的结果是A.

B.

C.

D.参考答案:D略8.定义在R上的函数y=f(x+1)的图象如图所示,它在定义域上是减函数,给出如下命题:①f(0)=1;②f(﹣1)=1;③若x>0,则f(x)<0;④若x<0,则f(x)>0,其中正确的是()A.②③ B.①④ C.②④ D.①③参考答案:B【考点】函数的图象与图象变化.

【专题】数形结合.【分析】由函数y=f(x+1)的图象,结合函数平移变换,我们易得函数y=f(x)的图象,然后根据图象逐一分析四个结论,即可得到答案.【解答】解:由定义在R上的函数y=f(x+1)的图象它是由函数y=f(x)的图象向左平移一个单位得到的,故函数y=f(x)的图象如下图所示:由图可得:①f(0)=1正确;②f(﹣1)=1错误;③若x>0,则f(x)<0错误;④若x<0,则f(x)>0正确.即只有①④正确故选B.【点评】本题考查的知识点是函数的图象与图象的变化,其中根据函数图象“左加右减”的原则,由函数y=f(x+1)的图象,向右平移一个单位,得到函数y=f(x)的图象是解答本题的关键.9.下列函数是偶函数的是A.

B.

C.

D.参考答案:B略10.若,且,则角的终边所在象限是(

)A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.(5分)已知圆(x﹣3)2+y2=16和圆(x+1)2+(y﹣m)2=1相切,则实数m=

.参考答案:3或﹣3考点: 圆与圆的位置关系及其判定.专题: 直线与圆.分析: 根据两个圆的方程,分别求出两圆半径与圆心的坐标,再根据两圆位置关系与数量关系间的联系即可求解,注意圆相切的两种可能性.解答: 解:根据题意得:圆C:(x﹣3)2+y2=16的圆心坐标为C(3,0),半径r=4;圆D:(x+1)2+(y﹣m)2=1的圆心坐标为D(﹣1,m),半径R=1.当两圆相外切时,圆心距CD=R+r=5,即=,所以m2=9,解得m=3或m=﹣3.当两圆内切时,圆心距CD=R﹣r=3,即==9此时方程无解,综上m=3或m=﹣3.故答案为:3或﹣3.点评: 本题主要考查圆与圆位置关系的知识点还考查两点之间的距离公式,圆与圆的位置关系与数量关系间的联系.注意要进行讨论.12.(5分)定义在[﹣2,2]上的偶函数g(x),当x≥0时,g(x)单调递减,若g(1﹣m)﹣g(m)<0,则实数m的取值范围是

.参考答案:考点: 函数单调性的性质;函数奇偶性的性质.专题: 计算题.分析: 由题条件知函数在[0,2]上是减函数,在[﹣2,0]上是增函数,其规律是自变量的绝对值越小,其函数值越大,由此可直接将g(1﹣m)<g(m)转化成一般不等式,再结合其定义域可以解出m的取值范围.解答: 因为函数是偶函数,∴g(1﹣m)=g(|1﹣m|),g(m)=g(|m|),

又g(x)在x≥0上单调递减,故函数在x≤0上是增函数,∵g(1﹣m)<g(m),∴,得.实数m的取值范围是.故答案为:﹣1≤m<点评: 本题考点是抽象函数及其应用,考查利用抽象函数的单调性解抽象不等式,解决此类题的关键是将函数的性质进行正确的转化,将抽象不等式转化为一般不等式求解.本题在求解中有一点易疏漏,即忘记根据定义域为[﹣2,2]来限制参数的范围.做题一定要严谨,转化要注意验证是否等价.13.设函数,则

,方程的解为

.参考答案:1,4或-2(1)∵,∴.(2)当时,由可得,解得;当时,由可得,解得或(舍去).故方程的解为或.

14.若函数y=f(x)为偶函数,且在(0,+∞)上是减函数,又f(3)=0,则<0的解集为.参考答案:(﹣3,0)∪(3,+∞)考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:根据题意和偶函数的性质画出符合条件的图象,利用函数的奇偶性将不等式进行化简,然后利用函数的单调性确定不等式的解集.解答:解:由题意画出符合条件的函数图象:∵函数y=f(x)为偶函数,∴转化为:,即xf(x)<0,由图得,当x>0时,f(x)<0,则x>3;当x<0时,f(x)>0,则﹣3<x<0;综上得,的解集是:(﹣3,0)∪(3,+∞),故答案为:(﹣3,0)∪(3,+∞).点评:本题主要考查函数奇偶性的应用,利用数形结合的思想是解决本题的关键.15.函数的最小值是_________________。参考答案:略16.设函数是定义在R上的偶函数,且对称轴为,已知当时,,则有下列结论:①2是函数的周期;②函数在(1,2)上递减,在(2,3)上递增;③函数的最小值是0,最大值是1;④当时,.其中所有正确结论的序号是_________.参考答案:①②④【分析】依据题意作出函数的图像,通过图像可以判断以下结论是否正确。【详解】作出函数的图像,由图像可知2是函数的周期,函数在上递减,在上递增,函数的最小值是0.5,最大值是1,当时,,故正确的结论有①②④。【点睛】本题主要考查函数的图像与性质以及数形结合思想,意在考查学生的逻辑推理能力。17.设={1,2,…,100},是的子集,且中至少含有一个立方数,则这种子集的个数是

。参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知集合,,且.求的取值范围.参考答案:解:

因为,所以

分两种情况讨论:Ⅰ.若时,此时有,所以.Ⅱ.若时,则有或所以综上所述,或.略19.已知数列{an}的前n项和为Sn,且Sn=2an﹣2,数列{bn}满足b1=1,且bn+1=bn+2.(1)求数列{an},{bn}的通项公式;(2)设cn=,求数列{cn}的前2n项和T2n.参考答案:【考点】8H:数列递推式;8E:数列的求和.【分析】(1)当n=1,可求a1,n≥2时,an=Sn﹣Sn﹣1可得an与an﹣1的递推关系,结合等比数列的通项公式可求an,由bn+1=bn+2,可得{bn}是等差数列,结合等差数列的通项公式可求bn.(2)由题意可得,然后结合等差数列与等比数列的求和公式,利用分组求和即可求解【解答】解:(1)当n=1,a1=2;

…当n≥2时,an=Sn﹣Sn﹣1=2an﹣2an﹣1,∴an=2an﹣1.…∴{an}是等比数列,公比为2,首项a1=2,∴.…由bn+1=bn+2,得{bn}是等差数列,公差为2.…又首项b1=1,∴bn=2n﹣1.…(2)…∴+[3+7+…+(4n﹣1)]==.

…20.在平行六面体ABCD-A1B1C1D1中,,。求证:(1);(2).参考答案:(1)见解析(2)见解析分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.

因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.21.如图,在三棱柱ABC-A1B1C1中,△ABC是边长为4的正三角形,侧面是矩形,D,E分别是线段的中点.(1)求证:平面;(2)若平面平面,,求三棱锥的体积.参考答案:(1)见解析(2)【分析】(1)取中点为,连接,由中位线定理证得,即证得平行四边形,于有,这样就证得线面平行;(2)由等体积法变换后可计算.【详解】证明:(1)取中点为,连接,是平行四边形,平面,平面,∴平面解:(2)是线段中点,则【点睛】本题考查线面平行的判定,考查棱锥的体积.线面平行的证明关键是找到线线平行,而棱锥的体积常常用等积变换,转化顶点与底.22.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.(1)求A∪B;(2)求(?UA)∩B;(3)求?U(A∩B).

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论