版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题:5.2.2同角三角函数的基本关系教学设计(第3课时)(一)教学内容《普通高中数学必修第一册》人教A版(2019)第五章《三角函数》的第二节《三角函数的概念》(二)教学目标1.能根据三角函数的定义推导同角三角函数的基本关系式,培养数学抽象的核心素养 2.掌握同角三角函数的基本关系式,并能根据一个角的三角函数值,求其它三角函数值,提升数学运算的核心素养;3.会利用同角三角函数的基本关系式进行化简、求值与恒等式证明,提升数学运算的核心素养。(三)教学重点及难点重点:理解并掌握同角三角函数基本关系式的推导及应用;难点:会利用同角三角函数的基本关系式进行化简、求值与恒等式证明.(四)教学过程设计(主体内容)用问题分解教学目标1.课题导入1.创设情境,生成问题气象学家洛伦兹1963年提出一种观点:南美洲亚马逊河流域热带雨林中的一只蝴蝶,偶尔扇动几下翅膀,可能在两周后引起美国德克萨斯的一场龙卷风.这就是理论界闻名的“蝴蝶效应”,此效应本意是说事物初始条件的微弱变化可能会引起结果的巨大变化.蝴蝶扇翅膀成为龙卷风的导火索.从中我们还可以看出,南美洲亚马逊河流域热带雨林中的一只蝴蝶与北美德克萨斯的龙卷风看来是毫不相干的两种事物,却会有这样的联系,这也正验证了哲学理论中事物是普遍联系的观点.想一想:既然感觉毫不相干的事物之间都是相互联系的,那么“同一个角”的三角函数之间有没有关系呢?提示:有.2.探究教学设角α的终边与单位圆交于点P(x,y),根据三角函数的定义知y=sinα,x=cosα,yx=tanα【探究1】能否根据x,y的关系得到sinα,cosα,tanα的关系?【提示】sin2α+cos2α=1,eq\f(sinα,cosα)=tan_α.【探究2】公式sin2α+cos2α=1与eq\f(sinα,cosα)=tan_α对任意角都成立吗?【提示】sin2α+cos2α=1对任意角α均成立,当α≠kπ+,k∈Z时,eq\f(sinα,cosα)=tan_α成立.【设计意图】通过复习三角函数的定义,用联系的观点引入本节新课,建立知识间的联系,提高学生概括推理的能力。(二)同角三角函数的基本关系同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1;(2)商数关系:eq\f(sinα,cosα)=tan_α(α≠eq\f(π,2)+kπ,k∈Z).(3)文字叙述:同一个角α的正弦、余弦的平方和等于1,商等于角α的正切.【思考】“同角”一词的含义是什么?【提示】一是“角相同”,如sin2α+cos2β=1就不一定成立.二是对任意一个角(在使得函数有意义的前提下),关系式都成立,即与角的表达式形式无关,如sin215°+cos215°=1,sin2eq\f(π,19)+cos2eq\f(π,19)=1等.【做一做1】已知α是第四象限角,cosα=eq\f(12,13),则sinα=.【答案】-eq\f(5,13)【做一做2】sin2eq\f(θ,2)+cos2eq\f(θ,2)=.【答案】1【做一做3】已知3sinα+cosα=0,则tanα=.【答案】-eq\f(1,3)拓展:基本关系式的变形公式sin2α+cos2α=1⇒eq\b\lc\{\rc\(\a\vs4\al\co1(sin2α=1-cos2α,,cos2α=1-sin2α,,sinα=±\r(1-cos2α),,cosα=±\r(1-sin2α),,sinα±cosα2=1±2sinαcosα.))tanα=eq\f(sinα,cosα)⇒eq\b\lc\{\rc\(\a\vs4\al\co1(sinα=tanαcosα,,cosα=\f(sinα,tanα).))【设计意图】通过探究让学生理解探究三角函数的基本关系,提高学生分析问题的能力。(三)典型例题1.已知一个三角函数值求另两个三角函数值例1.已知cosα=-eq\f(8,17),角α在第二象限,求sinα,tanα的值.【解析】α是第二象限角时,sinα>0,tanα<0,∴sinα=eq\r(1-cos2α)=eq\r(1-\b\lc\(\rc\)(\a\vs4\al\co1(-\f(8,17)))2)=eq\f(15,17),tanα=eq\f(sinα,cosα)=eq\f(\f(15,17),-\f(8,17))=-eq\f(15,8).【变式探究1】将本例条件“角α在第二象限”去掉,求sinα,tanα的值.[解析]∵cosα=-eq\f(8,17)<0,∴α是第二或第三象限角.当α是第二象限角时,sinα>0,tanα<0,∴sinα=eq\r(1-cos2α)=eq\r(1-\b\lc\(\rc\)(\a\vs4\al\co1(-\f(8,17)))2)=eq\f(15,17),tanα=eq\f(sinα,cosα)=eq\f(\f(15,17),-\f(8,17))=-eq\f(15,8).当α是第三象限角时,sinα<0,tanα>0,∴sinα=-eq\r(1-cos2α)=-eq\r(1-\b\lc\(\rc\)(\a\vs4\al\co1(-\f(8,17)))2)=-eq\f(15,17),tanα=eq\f(sinα,cosα)=eq\f(15,8).【变式探究2】已知tanα=-2,求sinα,cosα的值.[解析]法一:∵tanα=-2<0,∴α为第二或第四象限角,且sinα=-2cosα,①又sin2α+cos2α=1,②由①②消去sinα,得(-2cosα)2+cos2α=1,即cos2α=eq\f(1,5);当α为第二象限角时,cosα=-eq\f(\r(5),5),代入①得sinα=eq\f(2\r(5),5);当α为第四象限角时,cosα=eq\f(\r(5),5),代入①得sinα=-eq\f(2\r(5),5).法二:∵tanα=-2<0,∴α为第二或第四象限角.由tanα=eq\f(sinα,cosα),两边分别平方,得tan2α=eq\f(sin2α,cos2α),又sin2α+cos2α=1,∴tan2α+1=eq\f(sin2α,cos2α)+1=eq\f(sin2α+cos2α,cos2α)=eq\f(1,cos2α),即cos2α=eq\f(1,1+tan2α).当α为第二象限角时,cosα<0,∴cosα=-eq\r(\f(1,1+tan2α))=-eq\r(\f(1,1+-22))=-eq\f(\r(5),5),∴sinα=tanα·cosα=(-2)×eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(\r(5),5)))=eq\f(2\r(5),5).当α为第四象限角时,cosα>0,∴cosα=eq\r(\f(1,1+tan2α))=eq\r(\f(1,1+-22))=eq\f(\r(5),5),∴sinα=tanα·cosα=(-2)×eq\f(\r(5),5)=-eq\f(2\r(5),5).【类题通法】由某角的一个三角函数值求它的其余各三角函数值的依据及种类(1)依据:cosα=±eq\r(1-sin2α)或sinα=±eq\r(1-cos2α),要根据角α所在的象限,一般是先选用平方关系,再用商数关系,恰当选定根号前面的正负号,而在使用tanα=eq\f(sinα,cosα)时,不存在符号的选取问题.(2)分类:①如果已知三角函数的值,且角的象限已被指定时,则只有一组解;②如果已知三角函数的值,但没有指定角在哪个象限,那么由已知三角函数值确定角可能在的象限,然后再求解,这种情况一般有两组解;【巩固练习1】已知sinφ=-eq\f(3,5),且|φ|<eq\f(π,2),则tanφ=()A.-eq\f(4,3) B.eq\f(4,3)C.-eq\f(3,4) D.eq\f(3,4)解析:选C∵sinφ=-eq\f(3,5),∴cos2φ=1-sin2φ=1-eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(3,5)))2=eq\f(16,25),又|φ|<eq\f(π,2),即-eq\f(π,2)<φ<eq\f(π,2),∴cosφ=eq\f(4,5),从而tanφ=eq\f(sinφ,cosφ)=eq\f(-\f(3,5),\f(4,5))=-eq\f(3,4).2.齐次式求值例2.已知tanα=3,求:①eq\f(2sinα-3cosα,4sinα-9cosα);②sin2α-3sinαcosα+1.[解析]①原式=eq\f(2tanα-3,4tanα-9)=eq\f(2×3-3,4×3-9)=1.②原式=eq\f(sin2α-3sinαcosα,sin2α+cos2α)+1=eq\f(tan2α-3tanα,1+tan2α)+1=eq\f(32-3×3,1+32)+1=0+1=1.【类题通法】关于sinα,cosα的齐次式的求值方法(1)关于sinα,cosα的齐次式,可以通过分子、分母同除以cosα或cos2α转化为关于tanα的式子后再求值.(2)假如代数式中不含分母,可以视分母为1,灵活地进行“1”的代换,由1=sin2α+cos2α代换后,再同除以cos2α,构造出关于tanα的代数式.【巩固练习2】已知eq\f(sinα-2cosα,3sinα+5cosα)=-5,那么tanα的值为()A.-2 B.2C.eq\f(23,16) D.-eq\f(23,16)解析:由eq\f(sinα-2cosα,3sinα+5cosα)=-5,分子分母同除以cosα得:eq\f(tanα-2,3tanα+5)=-5,解得tanα=-eq\f(23,16).答案:D3.关于sinθ±cos例3.已知sinθ+cosθ=eq\f(1,5),且0<θ<π,求sinθ-cosθ.[解析]∵sinθ+cosθ=eq\f(1,5),∴(sinθ+cosθ)2=eq\f(1,25),解得sinθcosθ=-eq\f(12,25).∴(sinθ-cosθ)2=1-2sinθcosθ=eq\f(49,25).∵0<θ<π,且sinθcosθ<0,∴sinθ>0,cosθ<0,∴sinθ-cosθ>0,∴sinθ-cosθ=eq\f(7,5).【类题通法】(1)sinθ+cosθ,sinθcosθ,sinθ-cosθ三个式子中,已知其中一个,可以求其他两个,即“知一求二”.(2)求sinθ+cosθ或sinθ-cosθ的值,开方时要注意判断它们的符号.(3)sinθ±cosθ与sinθcosθ相互转化方法:(sinθ±cosθ)2=1±2sinθcosθ.【巩固练习3】若sinθ-cosθ=eq\r(2),则tanθ+eq\f(1,tanθ)=.解析由已知得(sinθ-cosθ)2=2,∴sinθcosθ=-eq\f(1,2).∴tanθ+eq\f(1,tanθ)=eq\f(sinθ,cosθ)+eq\f(cosθ,sinθ)=eq\f(1,sinθcosθ)=-2.答案-24.三角函数式的化简例4.化简下列各式.(1)tanαeq\r(\f(1,sin2α)-1),其中α是第二象限角;(2)eq\f(cos36°-\r(1-cos236°),\r(1-2sin36°cos36°))[解析](1)因为α是第二象限角,所以sinα>0,cosα<0.故tanαeq\r(\f(1,sin2α)-1)=tanαeq\r(\f(1-sin2α,sin2α))=tanαeq\r(\f(cos2α,sin2α))=eq\f(sinα,cosα)·eq\b\lc\|\rc\|(\a\vs4\al\co1(\f(cosα,sinα)))=eq\f(sinα,cosα)·eq\f(-cosα,sinα)=-1.(2)原式=eq\f(cos36°-\r(sin236°),\r(sin236°+cos236°-2sin36°cos36°))=eq\f(cos36°-sin36°,\r(cos36°-sin36°2))=eq\f(cos36°-sin36°,|cos36°-sin36°|)=eq\f(cos36°-sin36°,cos36°-sin36°)=1.【类题通法】1.三角函数式化简的本质及关注点(1)本质:三角函数式化简的本质是一种不指定答案的恒等变换,体现了由繁到简的最基本的数学解题原则.(2)关注点:不仅要熟悉和灵活运用同角三角函数的基本关系式,还要熟悉并灵活应用这些公式的等价变形,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α,sinα=tanα·cosα,cosα=eq\f(sinα,tanα).2.对三角函数式化简的原则(1)使三角函数式的次数尽量低.(2)使式中的项数尽量少.(3)使三角函数的种类尽量少.(4)使式中的分母尽量不含有三角函数.(5)使式中尽量不含有根号和绝对值符号.(6)能求值的要求出具体的值,否则就用三角函数式来表示.【巩固练习4】化简eq\f(cosθ,1+cosθ)-eq\f(cosθ,1-cosθ)得()A.-eq\f(2,tan2θ)B.eq\f(2,tan2θ)C.-eq\f(2,tanθ)D.eq\f(2,tanθ)解析eq\f(cosθ,1+cosθ)-eq\f(cosθ,1-cosθ)=eq\f(cosθ1-cosθ-cosθ1+cosθ,1-cos2θ)=eq\f(-2cos2θ,sin2θ)=-eq\f(2,tan2θ).答案A5.三角函数式的证明例5.求证:2(1-sinα)(1+cosα)=(1-sinα+cosα)2.[证明]左边=2(1-sinα+cosα-sinαcosα)=1+(sin2α+cos2α)-2sinα+2cosα-2sinαcosα=(1-2sinα+sin2α)+2cosα(1-sinα)+cos2α=(1-sinα)2+2cosα(1-sinα)+cos2α=(1-sinα+cosα)2=右边.∴原式成立.【类题通法】证明三角恒等式的常用方法证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边,遵循由繁到简的原则.(2)证明左右两边等于同一个式子.(3)证明左边减去右边等于零或左、右两边之比等于1.(4)证明与原式等价的另一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业技术产品技术咨询合同
- 云餐饮解决方案服务合同
- 合作活动协议范本
- 仓库保管义务保证函
- 弱电工程维护服务协议
- 房产抵押转购协议
- 仓储配送一体化合作协议
- 郑州西亚斯学院《古代汉语》2021-2022学年第一学期期末试卷
- 机房设备整体搬迁协议
- 郑州西亚斯学院《创业基础》2022-2023学年第一学期期末试卷
- 人教版数学四年级上册-第五单元-平行四边形和梯形-单元测试卷(含答案)
- 厂房装修合同模板
- 企业旗杆维修合同范例
- 基于区块链技术的农产品追溯与安全保障解决方案
- 《市场营销》教案全套 蒋世军(第1-12周)认识市场营销 -数字营销与直播电商
- 体育学概论学习通超星期末考试答案章节答案2024年
- 2025届河南省信阳第一高级中学高二物理第一学期期末综合测试模拟试题含解析
- 珍爱生命,拒绝“死亡游戏”主题班会教案(3篇)
- 2024-2030年度假酒店项目融资商业计划书
- 2024年重庆新版劳动合同范本
- 2024世界糖尿病日糖尿病与幸福感糖尿病健康教育课件
评论
0/150
提交评论