版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
流体机械的密封一.迷宫密封(labyrinthseal)二.浮环密封(bushingseal)三.机械密封(mechanicalseal)四.干气密封(drygasseal)五.填料密封2/6/20231一.迷宫密封
迷宫密封是在转轴周围设置若干个依次排列的环形密封齿,齿与齿之间形成一系列节流间隙与膨胀空腔,被密封介质在通过曲折迷宫的间隙时产生节流效应而达到阻漏的目的。2/6/202321.迷宫密封的密封机理
气体在压差的推动下,高速穿过狭小的齿顶间隙进入空腔,突然膨胀产生剧烈的漩涡,气流的绝大部分动能转化为热能而损失,残余的小部分动能以余速穿过下一级齿顶间隙继续降低流速和流量。连续经过数级梳齿后,可使残余速度和外漏量迅速的减小,而达到阻漏的目的。2/6/202332.迷宫密封的特点优点结构简单价格低廉功耗低寿命长缺点泄漏量大污染环境机组效率降低间隙过小可能对轴磨损2/6/202343.迷宫密封的典型结构充气密封示意图抽气密封示意图2/6/20235蒸汽阻塞密封示意图2/6/20236
4.迷宫密封在我厂应用合成车间老区的压缩机101-J(改造后为软密封)、105-J、新区氨冰机J-2501的级间密封、平衡盘密封均为此种形式,103-J的级间密封也为迷宫密封、合成气压缩机103-J平衡盘密封为蜂窝式密封,实质上是迷宫密封的特殊形式,其密封效果比普通迷宫密封要好,主要用在高压机组中,这样可以更好的平衡轴向推力,确保机组平稳、安全运行。2/6/20237二.浮环密封
压缩机浮环密封通常是在转轴上安装两个以上的浮环,在浮环之间引入高于工艺气压力的密封油,运转时封油在浮环与轴套之间形成油膜,产生节流作用,阻止工艺气外泄而达到阻漏的目的。2/6/202381.浮环密封的密封机理套于轴上的圆环,其内壁与轴存在一定的间隙。轴旋转时,轴表面带动密封液进入偏心的楔形间隙内。在楔形间隙内产生流体动压效应,使环浮动抬升,环内壁脱离轴表面而变成非接触状态。在此状态下利用周向狭长间隙的节流作用而达到阻漏的目的。2/6/202392.浮环密封的特点优点适用的转速压力范围较大寿命长用油封气,可做到不漏缺点密封油内泄漏量大,可能污染工艺气油系统投资较大,结构复杂,占地较大,运行维护费用高2/6/2023103.密封的典型结构2/6/2023114.浮环密封系统示意图2/6/202312三.机械密封 1.机械密封的工作原理机械密封是一对或数对垂直于轴作相对滑动的端面在流体压力和补偿机构的弹力作用下保持贴和并配以辅助密封而达到阻漏的轴封装置。2/6/2023132.机械密封的典型结构常用的单端面机械密封的结构如图一2/6/202314机械密封通常由四个部分组成:静环1;动环2;弹簧加载装置(由弹簧4;弹簧座5;键6组成);辅助密封圈(静环密封圈7;动环密封圈9;端盖密封圈8),销子10固定在端盖上,用以防止静环转动通常机械密封一般有四个密封点(见图一)相对旋转密封点A——在弹簧和流体压力的作用下,使具有相对运动的动环和静环接触端面紧密配合,从而实现对流体密封的目的。2/6/202315在机械密封工作的过程中,要求密封端面之间保持一层液膜,这样会使密封效果好,使用寿命长;静环和压盖之间的密封点B—通常采用各种形式的辅助密封圈,我厂的设备此处密封主要用”O“环,其作用防止流体从静环与压盖之间流出,这是一种静密封;动环和轴套之间的密封是一种相对静止的密封,要求在动、静环工作一段时间磨损后能后做微量的轴向移动,压盖上的密封点D—是一种静密封通常用垫片或”O“环处理,通常不会失效。2/6/202316机械密封的分类由于生产实践所提出的要求不同,因此便产生了不同结构形式的机械密封,虽然它们结构上有些区别,但是密封原理却大同小异。机械密封的分类方法很多,大致分类如下:1、平衡型与非平衡型这是按照介质压力在动静环端面上所引起的比压的卸载情况来分类的,由于密封装置的结构形式不同,所以介质的压力在动静环端面上所引起的作用也就不同,图二为内装非平衡型机械密封的简图。2/6/2023172/6/202318由图可知:在这种结构形式下,介质的压力就会使端面压紧,并且在端面上产生的比压要大于介质压力,由于这种形式的机械密封不产生卸荷作用,故称为非平衡型,由于它没有卸荷作用,所以当工艺参数波动,介质压力升高时,密封面的比压也会随着增加,从而促使密封端面的液膜被破坏,造成端面过度磨损或烧伤,致使密封作用失效,因此一般非平衡型密封,一般多用在介质压力在0.3—0.5MPa的情况下或者用在40—60公斤/厘米2的范围内。2/6/2023192/6/202320图三为内装平衡型机械密封,由图可见:在这种结构形式中,介质的压力起到使密封端面拉开的作用,象这种能起卸荷作用的结构形式,称为平衡型。图四为部分平衡型机械密封,因为:而0<K内<1,介质压力促使密封面压紧。D22-d02负荷面积
2/6/202321但是由于接触面积大于负荷面积,故介质在密封面上产生的比压要小于介质的压力,从而起到卸荷的作用,且随着K内值的减小,卸荷作用越大,通常取K内=75%左右。内装平衡型机械密封可以在较广的范围内使用,但是由于轴(或轴套)必须制成台阶,所以成本比非平衡型的高,因此在运行条件允许的情况下,尽可能的用非平衡型的。2/6/2023222、静止型和旋转型静止型与旋转型是按弹簧加荷装置来定的,弹簧加荷装置随轴一起旋转的,称为旋转型,如图五,弹簧加荷装置不随轴一起旋转的,称为静止型,如图六2/6/2023232/6/202324一般多采用旋转型结构,因为弹簧装置及其轴的结构简单,径向尺寸小,但是当旋转速度大于30米/秒时,由于其离心力大并且动平衡要求高所以采用静止型较为合适。3.内流和外流型按介质的泄漏方向分为内流和外流型,介质沿半径方向从端面外周向内流的称为内流型,介质沿半径方向从端内周向外流的称为外流型。内流型介质的泄漏方向与离心力方向相反,离心力阻碍流体的泄流,因而内流型的泄漏比外流型少,对于固体介质颗粒的采用内流型更为合适,这样可以减少固体颗粒进入密封端面,有利于密封效果并能提高使用寿命,外流型的润滑性能比内流型的好,故可以用在高速的情况下。2/6/202325机械密封的冷却、冲洗和过滤机械密封的冷却、冲洗和过滤的必要性:机械密封动、静环摩擦面温度的升高会给机械密封的平稳运行带来不利影响,温度过高会使端面液膜破坏,使动、静环端面产生强烈磨损,致使密封失效,温升一方面由于端面摩擦引起,另一方面也是由于密封介质的温度过高引起,因此当密封介质的温度超过80度时,除了考虑材料能耐高温外,还必须采取措施进行冷却以降低密封腔的温度。当密封介质含有悬浮颗粒和杂质还必须采用过滤和冲洗措施。2/6/202326常用的冲洗、冷却措施有:冲洗型冷却(分为自身冲洗-一般机泵都采用这种方式和外部冲洗)、静环背部冷却、静环外周冷却、冲洗与静环背部组合冷却、冲洗、静环背部及水冷夹套组合(104J)。过滤分为:并联过滤和旋液过滤。2/6/2023271.机械密封的特点优点内漏量低对轴无磨损可靠性高功耗低寿命长缺点承受的压力速度有限结构较复杂,对制造安装要求较高价格较高2/6/2023282.机械密封的典型结构双端面机械密封2/6/202329机械浮环组合式密封2/6/202330四.干气密封干气密封是一种新型的非接触式轴封,干气密封的概念是六十年代末期从气体润滑轴承的基础上发展起来的,其中以螺旋槽密封最为典型。经过数年的研究,美国约翰·克兰公司率先推出干气密封产品并投入工业使用。2/6/202331实践表明,干气密封在很多方面都优越于普通接触式机械密封,它主要用于管线、海洋平台、炼油厂、石油化工行业等,适合于任何输送气体的系统。2/6/202332由于干气密封属于非接触式密封,基本上不受PV值的限制,因此干气密封特别适合作为在高速高压条件下的大型离心压缩机轴封。干气密封的出现,是密封技术的一次革命,气体密封的难题从此得以解决,而不再会受到密封润滑油的限制,而且其所需的气体控制系统比油膜密封的油系统要简单得多。
2/6/202333另外,干气密封的出现也改变了传统的密封观念,将干气密封技术和阻塞密封原理有机结合,“用气封液或气封气”的新观念替代传统的“液封气或液封液”观念,可保证任何密封介质实现零逸出,这就使得干气密封在泵用轴封领域也将有广泛的应用前景。2/6/202334下表为压缩机干气密封与其它常见密封的泄漏量比较试验机组使用条件:轴径140mm,转速5000r/min,工艺气压力0.6MPa,封油(气)压力0.75MPa.2/6/202335与普通接触式机械密封相比,干气密封有以下主要优点:省去了密封油系统及用于驱动密封油系统运转的附加功率负荷。大大减少了计划外维修费用和生产停车。避免了工艺气体被油污染的可能性。密封气体泄漏量小。维护费用低,经济实用性好。密封驱动功率消耗小。密封寿命长,运行可靠。2/6/202336二、干气密封的工作原理
与其它机械密封相比,干气密封在结构方面基本相同。其主要区别在于,干气密封的一个密封环上面加工有均匀分布的浅槽,干气密封能在非接触状态下运行就是靠这些浅槽在运转时产生的流体动压效应使密封面分开。2/6/202337干气密封端面的槽形主要分单旋向和双旋向两大类。2/6/202338
单旋向槽型在目前的压缩机组上使用最多,常见的主要有以上几种。单旋向槽型只可使用于单向旋转的机组,在要求的旋向下才可产生开启力,如反转则产生负的开启力而可能导致密封的损坏。但相对于双旋向的槽型,它可形成更大的开启力和气膜刚度,产生更高的稳定性而更可靠的防止端面接触。故在很低的转速下和较大的振动下也可使用。2/6/2023392/6/202340
双旋向槽型常见有以上几种。该槽型使用无旋向要求,正反转皆可。机组的反转不会造成密封的损坏。其使用范围较单旋向槽宽,但其稳定性、抗干扰能力较单旋向差。2/6/202341对比干气密封各种槽型的研究结果,最终确认在同样的工作参数下,以螺旋线设计的槽型具有最大的气膜刚度的同时仅有较小的泄漏量。即具有最大的刚漏比。下面重点介绍这种槽型。2/6/202342下图所示是典型的干气密封螺旋槽端面的示意图。密封面上加工有一定数量的螺旋槽,其深度小于10微米。密封运转时,被密封气体周向吸入螺旋槽内,径向分量由外径朝中心(即低压侧)流动,而密封坝限制气体流向低压侧。气体随着螺旋槽截面形状的变化被压缩,在槽根部形成局部的高压区,使端面分开几微米而形成一定厚度的气膜。
2/6/202343在此厚度气膜下,由气膜作用力形成的开启力与由弹簧力和介质作用力形成的闭合力达到平衡,于是密封实现非接触运转。干气密封的密封面间形成的气膜具有一定的正刚度,保证了密封运转的稳定性。为了获得必要的流体动压效应,动压槽必须开在高压侧。2/6/2023442/6/202345上图所示为螺旋槽干气密封的作用力图,从图上可以看出气膜刚度是如何保证密封运转的稳定性的。在正常情况下,密封的闭合力等于开启力。当受到外来干扰(如工艺或操作波动),气膜厚度变小,则气体的粘性剪力增大,螺旋槽产生的流体动压效应增强,促使气膜压力增大,开启力随之增大,为保持力平衡密封恢复到原来的间隙;反之,密封受到干扰气膜厚度增大,则螺旋槽产生的动压效应减弱,气膜压力减小,开启力变小,密封恢复到原来的间隙。2/6/202346因此,只要在设计范围内,当外来干扰消除后,密封总能恢复到设计的工作间隙,即干气密封具有自我调节的功能而保证运行稳定可靠。衡量密封稳定性的主要指标就是密封产生气膜刚度的大小,气膜刚度是气膜作用力的变化与气膜厚度的变化之比,气膜刚度越大,表明密封的抗干扰力越强,密封运行越稳定。2/6/202347三、干气密封的典型结构对于不同的工况条件,可采用不同的干气密封总体结构形式。实际应用中,用于离心压缩机的干气密封主要有下面四种结构形式:2/6/2023481、单端面密封2/6/202349单端面密封主要用于不属于危险性的气体,即允许少量介质气体泄漏到大气环境中的场合。密封所用气体为工艺气本身。国内引进机组中的二氧化碳压缩机多用此种类型。2/6/2023502、串联密封串联式干气密封是一种操作可靠性较高的密封结构,典型应用是允许少量介质气体泄漏到大气中的工况。在石油化工企业的引进机组中使用较多。2/6/2023512/6/202352一套串联式干气密封可看作是两套或更多套干气密封按照相同的方向首尾相连。与单端面结构相同,密封所用气体为工艺气本身。通常情况下采用两级结构,第一级(主密封)密封承担全部负荷,而另外一级作为备用密封不承受压力降,通过主密封泄漏出的工艺气体被引入火炬燃烧。剩余极少量的未被燃烧的工艺气通过二级密封漏出,引入安全地带排放。当主密封失效时,第二级密封可以起到辅助安全密封的作用,可保证工艺介质不大量向大气泄漏。2/6/2023533、中间带迷宫的串联密封2/6/202354如果不允许工艺介质泄漏到大气中且也不允许缓冲气泄漏到工艺介质中,此时串联结构的两级密封间可加一级迷宫密封。该结构用于易燃、易爆、危险性大的介质气体,可以做到完全无外漏。如H2压缩机、H2S含量较高的天然气压缩机、乙烯、丙烯、氨压缩机等。2/6/202355该结构所用气体除用工艺气本身以外,还需另引一路氮气作为第二级密封的使用气体。通过主密封泄漏出的工艺气体被氮气全部引入火炬燃烧。而通过二级密封漏入大气的全部为氮气。当主密封失效时,第二级密封同样起到辅助安全密封的作用。该结构相对较复杂,但由于其可靠性最高,目前在中高压的离心压缩机轴封中已成为标准配置。2/6/2023564、双端面密封2/6/202357双端面密封相当于面对面布置的两套单端面密封,有时两个密封共用一个动环。它适用于没有火炬条件,允许少量密封气进入工艺介质中的情况。在两组密封之间通入氮气作阻塞气体而成为一个性能可靠的阻塞密封系统,控制氮气的压力使其始终维持在比工艺气体压力稍高(0.2~0.3MPa)的水平,这样气体泄漏的方向总是朝着工艺介质气体和大气,从而保证了工艺气体不会向大气泄漏。双端面密封结构主要用于压力不高的有毒、易燃易爆气体。2/6/202358四、影响干气密封的因素干气密封虽然在工作时端面为非接触,但在开停车时仍会有短暂的接触,这就要求配对材料的耐磨性好。干气密封摩擦付材料,硬环一般采用低膨胀系数、高弹性模量、抗拉强度、热导率及硬度的材料,如SiC或硬质合金。软环用浸漬石墨或SiC。流体动环槽一般加工在动环表面。2/6/202359由于干气密封在结构上与普通机械密封差别不大,因此干气密封的设计主要体现在密封环端面槽形参数的设计上。干气密封的理论基础源于螺旋槽推力轴承,气体的动压效应服从于雷诺方程及纳维尔-斯托克斯方程。气体密封运转的稳定性和可靠性取决于密封面气膜刚度大小,无论是工艺参数还是螺旋槽结构参数对密封性能的影响,都主要体现在对气膜刚度的影响,气膜刚度越大,密封稳定性越好。我公司在考虑气膜刚度的同时,也考虑了密封的泄漏量,即密封应具有最大的刚漏比。其物理意义是密封既具有较大的刚度又具有较小的泄漏量。只有具有最大刚漏比和较大气膜刚度的干气密封才能保证密封长周期、稳定、理想地运行。2/6/202360影响气膜刚度的螺旋槽的结构参数主要有槽深、螺旋角、槽数、槽宽与堰宽比、槽长与坝长比等,需用专用软件进行优化设计。而影响气膜刚度的工艺参数主要有以下几类:1.缓冲气粘度密封气粘度的大小对气膜刚度的影响比较大,粘度越大、动压效应越强、气膜刚度也就越大。2/6/2023612.密封气温度在不同温度下,气体的粘度是不一样的;温度越高、粘度越大、气膜刚度越大。3.密封转速转速越高,动压效应越强、气膜刚度越大。在理想状态下(即不考虑密封加工精度和安装精度的影响),干气密封的转速越高、其稳定性越好,而不受机械密封PV值的限制,因此干气密封特别适合高速运转下使用。2/6/2023624.密封端面的直径大小在同一转速下,密封直径越大线速度越高,气膜刚度越大。5.缓冲气的压力缓冲气压力对气膜刚度的影响较小,一般来说,压力越高,气膜刚度略有增大。2/6/202363五、干气密封控制系统为了保证干气密封运行的可靠性,每套干气密封都有与之相匹配的监测控制系统,使得密封工作在最佳设计状态,当密封失效时系统能及时报警,有利于维修工人以最快速度处理现场事故。下面以典型的串联式干气密封系统为例做简单介绍。2/6/202364下图为该系统示意简图。该密封正常运行时是由机组出口端引出一股气,经过两级过滤器(过滤精度3μm)后成为干燥、洁净的气体作为干气密封的缓冲气进入密封腔。控制其压力稍高于正常运行时的参考气管工艺气压力(通常50KPa),其作用是阻挡未净化工艺气中的粉尘、凝缩油等杂质进入密封端面对干气密封的正常工作产生不利的影响。2/6/202365系统由一差压变送器测量缓冲气与参考气之间的差压,信号通过电气转换控制安装在缓冲气入口处的气动薄膜调节阀,以调节缓冲气的入口压力使其维持与参考气的恒定压差。进入密封腔的缓冲气的绝大部分通过梳齿密封回到工艺气内。剩余的一小部分通过第一级干气密封的端面漏出,称为一级泄漏气。当中的大部分被引入火炬安全的燃烧掉。2/6/2023662/6/202367第二级干气密封作为辅助安全密封,虽然不承受介质的压力,但需要在适当的压差下端面才可形成稳定的气膜而长期理想的运行,系统通过在一级泄漏气出口端设置节流阀,调整阀门孔径使其产生约适当的背压来满足要求。节流阀同时还起到一级密封失效时限制泄漏量的作用。另引一路氮气为隔离气,经过滤器、减压阀后引入后置的梳齿阻隔密封中间。控制其压力稍高于轴承箱油压(通常为大气压),形成一个性能可靠的阻塞密封系统。可保证轴承箱中的润滑油不进入干气密封,也可避免残余的工艺气进入轴承区域污染润滑油。隔离气的一部分进入轴承箱,另一部分与一级泄漏气中剩余的极少量未被燃烧的工艺气混合,称为二级泄漏气。可作为对环境无害的气体引入安全场所排放。2/6/202368判断密封是否正常工作主要通过对一级泄漏气的监测来进行。一级干气密封如出现异常,压力和流量会明显增大。如达到设定的高报警值,会通过压力变送器传至控制室,发出报警信号,提醒操作人员检查控制系统压力是否在设计范围。当气体泄漏量达到高高报警值时,表明干气密封已经失效,系统连锁停车,保证设备不受损坏。2/6/202369六、干气密封安装注意事项干气密封属于高度精密的零件,对安装、拆卸及使用都有其特殊的要求,通常需注意的事项如下:1.非专业厂家不可随意分解。(装配关系复杂,清洁程度要求高,装配工具特殊,动平衡精度高等)。2.运输,安装,拆卸均需要定位板。3.对腔体与轴的相对位置关系要求高,需提前确认相关尺寸,必要时加垫片调整。4.安装时需保持转子与机壳的同轴度,同时需将转子固定。5.通常先安装推力盘端,可保证另一端密封安装位置准确。6.彻底清洁密封腔及各进出气管,要求高于油管。7.不可用黄油润滑,应采用硅脂。8.密封装入机组取下定位板后,转子轴向位移不可超过2mm。2/6/202370七、干气密封工作时的维护干气密封设计的适用范围较宽,正常情况下不需要维护。一般应每天观察密封泄漏量。泄漏量如有增加的趋势,可能预示着密封有失效的可能。通常应注意以下几点:1.螺旋槽干气密封是单向旋转的,因此应一定避免反向旋转。同时应避免在小于5米/秒的低速下长时间运转。这两种情况均有可能损坏密封。2/6/2023712.确保密封气的流量稳定。维持密封气的稳定和不间断是干气密封正常运行的基本条件。3.避免密封的负压操作,双端面密封如出现负压在静压条件下能导致泄漏量的大幅增加,而在动压条件下能导致密封端面的损坏。串联式密封则可能引起密封被未净化的工艺气污染而很快失效。4.随时监控密封泄漏量的变化情况。泄漏量的变化直接反映出干气密封的运行状态。引起泄漏量变化的因素很多,如工艺气的波动、轴窜、喘振、压力、温度和速度的变化等。只要不持续上升,则认为密封运行正常;但如泄漏量出现不断上升的趋势,则预示着干气密封出现了故障。2/6/2023725.过滤器压差达到报警值时应及时切换过滤器,并更换滤芯。6.机组开车时,必须等待干气密封控制系统的隔离气建立起足够的压力后才能开启滑油系统。7.机组停车时,必须等待机组完全停止运行并在滑油系统停止后10分钟以上才能关闭干气密封控制系统。2/6/202373附:泵用干气密封的典型结构及特点
干气密封目前不仅在离心压缩机得到广泛的应用,在离心泵上的使用也逐渐增多。对于不同的工况条件,泵用干气密封可采用不同的结构形式。实际应用中,主要有两种结构:1.泵用机械+干气组合式密封(CM1B/1G型)2/6/2023742/6/202375该密封为介质侧机械密封和大气侧干气密封前后串联布置的结构。第一级的机械密封为主密封,第二级干气密封是作为安全密封来使用的。第一级机械密封基本上承受全部的压差,该密封工作在泵输送的工艺介质中。第二级干气密封通常情况在很低的压差下工作。由于其摩擦副始终保持在非接触状态下运行,没有任何磨损,在一级机械密封损坏前能够一直处于理想的运转状态,故干气密封是做为安全密封最适合的型式。2/6/202376根据介质的性质及不同的环保要求,该结构还可分成以下两种形式:第二级干气密封的工作气体可以来自主密封的气态泄漏(PLAN71),对于一些介质(例如部分液态烃类),压力的释放会使其由液相转换为气相。当主密封失效时,会导致密封腔体中的压力升高,使干气密封自动闭合,并以液体润滑形式工作。密封腔压力升高,可由从密封腔体引出的一个压力开关探测到,当主密封失效压力升高至设定值时会引起开关报警,操作人员及时切换至备用泵。这样逸出到环境中的介质是非常有限的。这种方法的一个优点在于它不需要一个缓冲气体供应系统及火炬条件,是一种非常经济的解决方案,但它依赖于介质的物理特性。2/6/202377当环保要求很高,介质气体易燃、易爆、危险性大而要求外漏极少时,第二级的干气密封就需外部气源提供缓冲气(PLAN72)。使用缓冲气的目的是将泄漏气体输送去火炬,同时引入带压的缓冲气还可相对降低第一级机械密封所承受的压差,抑制一级密封的泄漏,润滑安全密封。干气密封在一定的压力下可以更理想的运行,同时缓冲气还可对少量漏出的介质气起到稀释作用。2/6/2023782/6/202379PLAN72系统见上图,在一般情况下,用氮气作为缓冲气。氮气经过滤、调压流量计、压力开关及单向阀后输入至干气密封的密封腔内,少量氮气会从干气密封的端面漏出(通常<20Nl/h)。在缓冲气和机械密封之间设置有排放通道,根据介质物理特性的不同,分为向下(PLAN75)和向上(PLAN76)两种排放方式。如果由机械密封端面泄漏的介质为不易挥发的流体,系统采用向下排放的方式(PLAN75,见下图)。在泵体下方设置一集液罐收集泄漏物,对气、液分别进行分离排放,同时通过压力表及压力开关对密封运行状态进行监控。2/6/202380如果由机械密封端面泄漏的介质以不会凝结的气相存在,系统则采用向上排放的方式(PLAN76,见下图)。将排放的气体引至火炬或高点放空,同时通过压力表及压力开关对密封运行状态进行监控。2/6/2023812/6/202382在泵腔尺寸允许的情况下,可在第一级机械密封与第二级干气密封之间加衬套或梳齿密封节流。一方面,该衬套减少了缓冲气的消耗,主密封失效时可降低介质进入安全密封的压力,另一方面,泄漏的危险气体将被缓冲气完全带入一个封闭、安全的系统如火炬。机械+干气组合式密封结构与普通串联机械密封相比,有以下显著优点:延长了主密封的寿命一级机械密封出现允许范围内的微量泄漏是很正常的,微量泄漏会很快使二级2/6/202383机械密封封液系统的压力升高,导致密封未失效而需停车检修。为了避免这种情况,有些厂家采用很高的密封端面比压来减小主密封的泄漏量,由于挥发性介质的润滑性很差,主密封的磨损很快,寿命提高非常有限。干气密封做安全密封就能很好地解决这个问题,一级机械密封的微量泄漏可通过二级干气密封输送到火炬系统,且一级机械密封的微量泄漏导致二级干气密封腔压力的升高会抑制机械密封端面的汽化,又减少了机械密封的泄漏,延长了主密封的寿命。我们为茂名乙烯提供的这种干气密封将其寿命由普通串联密封四个月提高到了两年。2/6/202384大大提高了密封系统的安全性普通串联密封的安全密封与主密封处于同时磨损状态,且主密封泄漏出的介质在第二级密封腔内汽化,使第二级密封常在汽、液相混的状态下工作,这样就使二级密封的寿命缩短,当主密封失效时安全密封的状况常常也难以乐观,甚至先于主密封失效,从而导致事故。干气密封平时处于非接触无磨损状态,其寿命是机械密封的很多倍,对于提高系统安全性的意义不言而喻。2/6/202385卓越的环保性普通的串联式机械密封,介质经过主密封端面漏出后进入封液,经安全密封端面泄漏的封液必然含有部分工艺介质,在主密封泄漏加大甚至失效时介质的现场外泄不可避免。而采用干气密封后,正常情况下介质的泄漏均被引至火炬或集液罐,而完全杜绝了介质向现场的泄漏。其突出的环保性使很多用户选用该型式的主要依据。2/6/202386降低维护频次,经济实用性好由于寿命的提高和密封驱动功率的减小,气体控制系统的制造成本也低于封液系统,故其经济性远优于普通串联密封。2/6/2023872.双端面干气密封(CM1GD型)双端面泵用干气密封相当于面对面布置的两套单端面密封(见下图),有时受轴向尺寸的限制两套密封可共用一个动环。它适用于没有火炬条件,允许少量缓冲气进入工艺介质中的情况。2/6/2023882/6/2023892/6/202390双端面干气密封其介质侧密封是主密封,大气侧密封用来密封缓冲气,当介质压力骤升或气源压力骤减导致主密封损坏时,它又起到安全密封的作用。双端面泵用干气密封必须要有外部气源提供的缓冲气
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年石家庄建筑工程分包合同
- 风电站电伴热施工合同
- 幼儿培训中心转让协议
- 门店买卖合同样本
- 政府机关减速带建设协议
- 运动中心钢结构施工协议
- 港口给水系统安装工程合同
- 广告服务一体机租赁协议
- 住宅区景观照明安装协议
- 酒店物业管理合同管理
- 浙江省嘉兴市2023-2024学年高一上学期1月期末考试政治试题
- 事业单位考试大纲题库考点《人文历史》(2023年版)-1
- 软件项目开发投标文件技术方案
- 《设计质量保证措施》
- 有关于企业的调研报告范文(10篇)
- 君乐宝在线测评题答案
- 2024年秋季新人教PEP版英语三年级上册全册教案
- 2022年农业银行法人信贷理论知识考试题库(含答案)
- 2024年秋国家开放大学会计信息系统(本)客观题及答案
- 在线招聘平台人才匹配算法优化与应用推广
- 重庆B卷历年中考语文现代文阅读之非连续性文本阅读5篇(含答案)(2003-2023)
评论
0/150
提交评论