垂径定理课件_第1页
垂径定理课件_第2页
垂径定理课件_第3页
垂径定理课件_第4页
垂径定理课件_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

24.1.2垂直于弦的直径(1)1、举例什么是轴对称图形。如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。2、举例什么是中心对称图形。把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。3、圆是不是轴对称图形?圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。复习回顾如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.(1)这个图形是轴对称图形吗?如果是,它的对称轴是什么?(2)你能发现图中有哪些相等的线段和弧?为什么?·OABCDE探究二垂径定理(1)是轴对称图形.直径CD所在的直线是它的对称轴(2)线段:

AE=BE⌒⌒弧:AC=BC,AD=BD⌒⌒CAEBO.D想一想:垂径定理:垂直于弦的直径平分弦,并且平分弦对的两条弧。CD为⊙O的直径CD⊥AB条件结论⌒⌒⌒⌒AE=BEAC=BCAD=BD·OABCDE垂径定理

垂直于弦的直径平分弦,并且平分弦所对的两条弧.题设结论(1)直径(2)垂直于弦}{(3)平分弦(4)平分弦所对的优弧(5)平分弦所对的劣弧①CD是直径②CD⊥AB可推得③AE=BE,⌒⌒⑤AD=BD.⌒⌒④AC=BC,垂直于弦的直径平分弦,并且平分弦所对的两条弧.垂径定理三种语言定理垂直于弦的直径平分弦,并且平分弦所的两条弧.●OABCDM└CD⊥AB,如图∵CD是直径,∴AM=BM,⌒⌒

AC=BC,⌒⌒

AD=BD.条件CD为直径CD⊥ABCD平分弧ADBCD平分弦ABCD平分弧ACB结论垂径定理的几个基本图形EOABDCEABCDEOABDCEOABCEOCDAB

练习1OBAED在下列图形中,你能否利用垂径定理找到相等的线段或相等的圆弧.O判断下列图形,能否使用垂径定理?注意:定理中的两个条件(直径,垂直于弦)缺一不可!

8cm1.半径为4cm的⊙O中,弦AB=4cm,

那么圆心O到弦AB的距离是

。2.⊙O的直径为10cm,圆心O到弦AB的距离为3cm,则弦AB的长是

。3.半径为2cm的圆中,过半径中点且垂直于这条半径的弦长是

练习2ABOABOAOBE方法归纳:解决有关弦的问题时,经常连接半径;过圆心作一条与弦垂直的线段等辅助线,为应用垂径定理创造条件。垂径定理经常和勾股定理结合使用。E.ACDBO.ABOE例1如图,已知在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径。讲解AB.O垂径定理的应用2.如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形ADOE是正方形.D·OABCE证明:∴四边形ADOE为矩形,又∵AC=AB∴AE=AD∴四边形ADOE为正方形.请围绕以下两个方面小结本节课:1、从知识上学习了什么?2、从方法上学习了什么?课堂小结圆的轴对称性;垂径定理

、关于弦的问题,常常需要过圆心作弦的垂线段,这是一条非常重要的辅助线.

、圆心到弦的距离、半径、弦长构成直角三角形,便将问题转化为直角三角形的问题.推论:平分弦(不是直径)的直径垂

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论