下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省长治市中峪乡中学2022年高三数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.阅读如图所示的程序框图,输出的结果的值为(
)A.
B.
C.
D.参考答案:B2.若是真命题,是假命题,则A.是真命题
B.是假命题C.是真命题
D.是真命题参考答案:D3.设各项均不为0的数列满足,若,则(
)A.
B.2
C.
D.4参考答案:【知识点】等比数列.
D3【答案解析】D
解析:由知数列是以为公比的等比数列,因为,所以,所以4,故选D.【思路点拨】由已知条件确定数列是等比数列,再根据求得,进而求.4.双曲线()的焦点坐标为…………(
)(A).
(B).(C).
(D).参考答案:B5.已知f(x)=﹣x+sinx,命题p:?x∈(0,),f(x)<0,则()A.p是假命题,¬p:?x∈(0,),f(x)≥0B.p是假命题,¬p:?x0∈(0,),f(x)≥0C.p是真命题,¬p:?x∈(0,),f(x)≥0D.p是真命题,¬p:?x0∈(0,),f(x)≥0参考答案:D【考点】全称命题;特称命题.【分析】先判断命题P的真假性,再写出该命题的否定命题即可.【解答】解:∵f(x)=﹣x+sinx,∴f′(x)=﹣1+cosx≤0∴f(x)是定义域上的减函数,∴f(x)≤f(0)=0∴命题P:?x∈(0,),f(x)<0,是真命题;∴该命题的否定是?P:?x0∈(0,),f(x0)≥0.故选:D.6.在中,AB=1,AC=3,D是BC边的中点,则=(
)
A.4
B.3
C.2
D.1参考答案:A略7.定义域为R的四个函数中,奇函数的个数是(
)A.4
B.3
C.2
D.1参考答案:C略8.已知集合A={x|≥0},B={x|log2x<2},则(?RA)∩B=(
)A.(0,3) B.(0,3] C.[﹣1,4] D.[﹣1,4)参考答案:A【考点】交、并、补集的混合运算.【专题】计算题;集合思想;分析法;集合.【分析】求出集合A,B,利用集合的基本运算即可的结论.【解答】解:集合A={x|≥0}=(﹣∞,﹣1)∪[3,+∞),∴(?RA)=[﹣1,3)B={x|log2x<2},∴,∴B=(0,4),∴(?RA)∩B=(0,3).故选:A.【点评】本题考查不等式的解集及其集合间的运算.比较基础.9.关于直线a、b、l及平面、,下列命题中正确的是
(▲)A.若a∥,b∥,则a∥b
B.若a∥,b⊥a,则b⊥C.若a,b,且l⊥a,l⊥b,则l⊥
D.若a⊥,a∥,则⊥参考答案:D略10.已知双曲线的左右顶点分别为,是双曲线上异于的任意一点,直线和分别与轴交于两点,为坐标原点,若依次成等比数列,则双曲线的离心率的取值范围是(
)A.
B.
C.
D.参考答案:A本题考查双曲线的标准方程与几何性质,等比数列.由题意得,,而是双曲线上的点,令;求得直线:,:,所以;而依次成等比数列,所以,即①;而②,联立解得,;所以离心率===;经验证,当时,不满足题意,所以双曲线的离心率.即双曲线的离心率的取值范围是.选A.【备注】双曲线,离心率,.二、填空题:本大题共7小题,每小题4分,共28分11.已知向量且则的值是__________参考答案:12.函数的定义域为R,且定义如下:(其中M是实数集R的非空真子集),在实数集R上有两个非空真子集A、B满足,则函数的值域为
。
参考答案:13.已知数列{an}的前n项和为Sn,对任意n∈N+,Sn=(﹣1)nan++n﹣3且(t﹣an+1)(t﹣an)<0恒成立,则实数t的取值范围是.参考答案:(﹣,)【考点】数列递推式.【分析】由数列递推式求出首项,写出n≥2时的递推式,作差后对n分偶数和奇数讨论,求出数列通项公式,可得函数an=﹣1(n为正奇数)为减函数,最大值为a1=﹣,函数an=3﹣(n为正偶数)为增函数,最小值为a2=,再由(t﹣an+1)(t﹣an)<0恒成立求得实数t的取值范围.【解答】解:由Sn=(﹣1)nan++n﹣3,得a1=﹣;当n≥2时,an=Sn﹣Sn﹣1=(﹣1)nan++n﹣3﹣(﹣1)n﹣1an﹣1﹣﹣(n﹣1)+3=(﹣1)nan+(﹣1)nan﹣1﹣+1,若n为偶数,则an﹣1=﹣1,∴an=﹣1(n为正奇数);若n为奇数,则an﹣1=﹣2an﹣+1=2(﹣1)﹣+1=3﹣,∴an=3﹣(n为正偶数).函数an=﹣1(n为正奇数)为减函数,最大值为a1=﹣,函数an=3﹣(n为正偶数)为增函数,最小值为a2=,若(t﹣an+1)(t﹣an)<0恒成立,则a1<t<a2,即﹣<t<.故答案为:(﹣,).14.设向量,,,若,则______.【命题立意】本题考查平面向量的模与数量积的运算。参考答案:。
15.已知是与的等比中项,且,则
参考答案:3略16.已知函数,,则
。参考答案:略17.点在不等式组,表示的平面区域上运动,则的最大值为_____.参考答案:5三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知数列{a}的前n项和Sn=—a—()+2
(n为正整数).(1)求数列{a}的通项(2)若=,T=c+c+···+c,求T.参考答案:解:⑴由S=—an—()+2,得S=—a—()+2,两式相减,得a=a+().因为S=—a—()+2,令n=1,得a=.对于a=a+(),两端同时除以(),得2a=2a+1,即数列{2a}是首项为2·a=1,公差为1的等差数列,故2a=n,所以a=.--------6分⑵由⑴及=,得c=(n+1)(),
所以T=2×+3×()+4×()+···+(n+1)(),①
T=2×()+3×()+4×()+···+(n+1)(),②
由①—②,得
T=1+()+()+···+()-(n+1)()=1+—
(n+1)()=—.
所以T=3—.----------12分19.如图,在三棱锥中,.(Ⅰ)求证:平面平面;(Ⅱ)若,,当三棱锥的体积最大时,在线段上是否存在一点,使得直线与平面所成角为?若存在,求出的长;若不存在,说明理由。(参考公式:棱锥的体积公式,其中表示底面积,表示棱锥的高)参考答案:解:(Ⅰ)∵,∴,.∵,∴平面∵平面,∴.
∵,∴.∵,∴平面.
∵平面,∴平面平面.
(Ⅱ)由已知及(Ⅰ)所证可知,平面,,∴是三棱锥的高.∵,,,设,则,.,∴∴当,有最大值,此时.以为原点,建立如图的空间直角坐标系,则,设是平面的法向量,则,取,得,设线段上的点的坐标为,则,∵,解得,
∴在线段上不存在点,使得直线与平面所成角为。略20.已知向量,,且.
(Ⅰ)求;(Ⅱ)设函数,求函数的最值及相应的的值.参考答案:解:(I)由已知条件:,得:21.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表:时间周一周二周三周四周五车流量x(万辆)100102108114116浓度y(微克)7880848890(1)根据上表数据,用最小二乘法求出y与x的线性回归方程;(2)若周六同一时段车流量是200万辆,试根据(1)求出的线性回归方程,预测此时PM2.5的浓度为多少?参考公式:,参考答案:因此,故故线性回归方程为若x=200,则22.已知动点M到点F(1,0)的距离,等于它到直线x=﹣1的距离.(Ⅰ)求点M的轨迹C的方程;(Ⅱ)过点F任意作互相垂直的两条直线l1,l2,分别交曲线C于点A,B和M,N.设线段AB,MN的中点分别为P,Q,求证:直线PQ恒过一个定点;(Ⅲ)在(Ⅱ)的条件下,求△FPQ面积的最小值.参考答案:【考点】直线与圆锥曲线的综合问题;恒过定点的直线;轨迹方程.【专题】综合题.【分析】(Ⅰ)设动点M的坐标为(x,y),由题意得,由此能求出点M的轨迹C的方程.(Ⅱ)设A,B两点坐标分别为(x1,y1),(x2,y2),则点P的坐标为.由题意可设直线l1的方程为y=k(x﹣1)(k≠0),由得k2x2﹣(2k2+4)x+k2=0.再由根的判别式和根与系数的关系进行求解.(Ⅲ)题题设能求出|EF|=2,所以△FPQ面积.【解答】解:(Ⅰ)设动点M的坐标为(x,y),由题意得,,化简得y2=4x,所以点M的轨迹C的方程为y2=4x.(Ⅱ)设A,B两点坐标分别为(x1,y1),(x2,y2),则点P的坐标为.由题意可设直线l1的方程为y=k(x﹣1)(k≠0),由得k2x2﹣(2k2+4)x+k2=0.△=(2k2+4)2﹣4k4=16k2+16>0.因为直线l1与曲线C于A,B两点,所以x1+x2=2+,y1+y2=k(x1+x2﹣2)=.所以点P的坐标为.由题知,直线l2的斜率为,同理可得点的坐标为(1+2k2,﹣2k).当k≠±1时,有,此时直线PQ的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产xxx核电站发电项目建议书
- 年产xx橡胶密封垫圈项目建议书
- 儿童灯项目可行性研究报告
- 2024年高性能陶瓷复合材料项目资金筹措计划书
- 中班教案:春天的小使者
- 煤矿顶板安全培训
- 2022-2023学年广东省深圳市宝安区六年级上学期期末英语试卷
- 大班空气教案11篇
- 季羡林《我的童年》说课稿
- 小班社会教案:小熊讲理啦
- GB/T 21661-2020塑料购物袋
- GB/T 13033.1-2007额定电压750V及以下矿物绝缘电缆及终端第1部分:电缆
- 安丘市地表水系分布图
- 第三部分31课财报阅读方法与技巧
- 小母鸡回来了-课件
- 四年级上册美术课件5我和动物交朋友-冀教版共
- 介绍家乡新化课件
- 儿童口腔保健及不良习惯课件
- 施工现场消防安全责任制度
- (完整)高位水池施工方案改
- 创伤外科跟骨骨折诊疗指南
评论
0/150
提交评论