版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
最优控制习题及参考答案习题1 通过x()=1,x)=2,使下列性能指标为极值的曲线:tfJ=∫
(2+)dtt0解:由已条件知:t0=0,tf=1d由欧拉方程得: (2)=0=1x=t+C2将x()=x)=2代入,有:C2=,1=1得极值轨线:x*t)=t+1习题2 性能指标:
J=∫
1(2+)t0边界条件x()=0,x)是自由情况下的极值曲线。1 2解: 上题得:x*t)=Ct+1 2
x*t)x由x()=0得:C2=0x0L由
t=tf
=2tf)=1t=t=0 tf0 1f是:x*t)=0【分析讨论】对于任意的x()=0x)自由。2 0 1 0有:C=x,C=0,即:x*t)2 0 1 0其几何意义:x)自由意味着终点在虚线上任意点。习题3 知系统的状态方程为:
1t)=2t),2t)=ut)边界件为:1()=2()=1,1)=2)=0,31∫试求使性能指标J=∫0
u2t)t2极小值的最优控制u*t)以及最优轨线x*t)。⎡x⎤解: 已知条件知:f=⎢2⎥⎣u⎦aiton函数:H=L+λTf
H=1u2+λx
+λu⎧=0⎩=−⎩=−λ2 1
2 12 2⎧λ=C ①得:⎨1 1⎩2=t+C2 ②H由控制方程:u
=u+2=0得:u=−2=t−C2 ③由状态方程:2=u=t−C2得:xt)=1Ct2−Ct+C ④2 2由状态方程:1=2
1 2 3得:xt)=1Ct3−1Ct2+Ct+C ⑤1 61
2 2 3 4⎤
⎡0⎤将x()=⎢⎥,x)=⎢0⎥代入④,⑤,⎦ ⎣⎦联立解得:1=由③、④、⑤式得:u*t)=0t−29
,C2=2,3=C4=191x*t)=1
5t3−t2+t+1x*t)=5t2−t+12 9习题4 知系统状态方程及初始条件为=u,
x()=1试确定最优控制使下列性能指标取极小值。1∫J=∫0解: H=x2e2t+u2e2t+λu⎪⎧=u⎪列方程:⎨=−2e2t⎩⎪e2tu+λ=0⎩
(x2+u2)e2tt①②③由③得,u代入①得,x
1e2tλ ④=−=−1e2tλ=−2x 1e2t
e2tλ=− +2将②,③代入,并考虑到u=
1e2t(−2e2t)+e2t(−2e2t)2=−整理可得:+2−x==−特征方程:s2+2s−1=01=−1+
,2=−1− 21 2于是得:x*t)=Cet+Ce21 2)= u=λ*t③e2t①−)= u=λ*t)=e2t
1e
t+Cse2t)22s2由x()=1,得:1+C2=1 22s21由λtf)=λ)=0得:11
+C2s2e =0 ⑥⑤、⑥联立,可得、C2代回原方程可得x*→u*(略)习题5 求使系统:1=2,2=u由初始状态1()=2()=0
出发,在tf
=1时转移到目标集11)+2)=1,并使性能指标J= ∫
1u2t)t2 0为最小值的最优控制u*t)及相应的最优轨线x*t)。解:本题f(iL(i)与习题3同故H(i)相同→方程同→通解同⎧1=2=−t+C2⎪⎪x=1Ct3−1Ct2+Ct+C⎨:⎪⎨
1 61 2 2 3 4⎪x=1Ct2−Ct+C⎪2 2⎪
1 2 3u=t−C2⎡0⎤x(0)=⎢⎥⎣0⎦由 ,有:3=C4=0 ①由1)+2)=1,有:1C
1C
+1C−C=161 2 2
21 22C−3C=1 ②31 2 2ϕ ψT由λ)= + ⋅γ=0ψ=1+2−1x x⎤:λ)=⎢⎥γ=0⇒λ)=λ⎦ 1 2于是:1=−1+C21=C2 ③3 6、③联立,得:1-C2=-7 7于是:u*=−3t+67 7x*=−1t3+3t21 4 7x*=−3t2+6t2 4 7习题6 已知一阶系统:t)=−xt)+ut),x()=3f(1)试确定最优控制u*t),使系统在t=2时转移到x()=0,并使性f能泛函
∫2∫J= 1+u2)t=in0f f(2如果使系统转移到xt)=0的终端时间t自由问u*t)f f解: H=1+u2+λu−λx⎪⎧=−x+u⎪方程:⎨=λ⎩⎪u+λ=0⎩协态方程得:λ=Cet ①1 t控制方程:u
=− e ②−t−t① tf
1 t代入状态方程:=−x− e2=x()=0
⇒xt)=2e
1Cet41C⎧ −1C=3C⎪2 41⎨Ce2−1Ce2=0⎪2 41解得:1=4 ,e−1
e4C2=4e−1代入②得:u*t)=−②xtf)=t
6 ete4−1C⎧ −1C=3C⎪2 41⎪⎪Ce−tf⎪
1Cetf=04⎨2 14⎪⎪Htf)=0⎪⎩解得:1=
40−60.325u*t)=−et习题7 系统状态方程及初始条件为t)=ut),x()=1试确定最优控制u*t),使性能指标
1 tf 2f ∫J=tf ∫2 0
ut为极小,其中终端时间tf未定,
xtf)=0。解: H=1u2+λu2协态方程得:=0
→λ=1 ①控制方程:u+λ=0
→u=−1 ②由状态方程:=u=1
⇒xt)=t+C2 ③由始端:x()=1
→C2=1由末端:xtf)=0
→tf+1=0 ④ϕ考虑到:Htf)=−t
ψt
⋅γ=−1∂f ∂f12有: u+λu=121C2−C2=1⇒C2=221 1 11=±2 ⑤当1=
2时,代入④有:tf
=1=11 2当1=−
2时,代入④有:tf
=1=−1,不合题意,故有C= 211 21最优控制
u*=−2习题8 设系统状态方程及初始条件为1t)=2t),1()=2性能指标为
2t)=ut),J=1∫tfu2t
2()=12 0要求达到xtf)=0,试求(1)tf
=5时的最优控制u*t);f(2)t自由时的最优控制u*t);解:本题f(iL(iH(i)与前同,故有f⎧⎪1=1⎪⎪2=−t+C2⎪x=1Ct3−1Ct2+Ct+C6⎨1 16⎪
2 2 3 4⎪x=1Ct2−Ct+C⎪2 2⎪
1 2 3u=t−C2⎡2⎤
⎡0⎤
⎪C4=2⎪3=15 ① 由x()=⎢⎥
x)=⎢0⎥,得:⎨
1−
C2+3+C4=0⎣1⎦
⎣⎦ ⎪6 2⎪C
−C+C=0⎪ 1 2 3⎩2联立得:1=.C2=8,
⇒ u*
=t−②tf自由⎧C=1⎪43=2⎪1Ct3−1Ct2+Ct
+C=06⎨ 1f6⎪
2 2f 3f 4⎪1Ct2−Ct
+C=0⎪21f⎪
2f 3⎩Htf)=0联立有:C2t2−Ct
+2=0, 无论C为何值,t均无实解。2f 2f 2 f习题9 定二阶系统
t)=xt)+1,x()=−11 2 4 1 412t)=ut),1
2()=−4控制约束为ut)≤ ,要求最优控制u*t),使系统在t=t2 f并使
时转移到xtf)=0,其中tf自由。
∫tf∫J= u2t)t=in0解:H=u2+λx
+1λ
+λu12 41 2
⎧−1λ λ≤1⎪22 2⎪本题属最小能量问题,因此:
u*t)=⎪−1
λ>12⎨ 22⎪⎪1 λ
<12⎪ 22⎩⎪=0→λ=C由协方程:⎨1 1 12 1 2 1 2⎩=−λ→λ=Ct2 1 2 1 22是t的直线函数。当u*t)=−1λ
=1Ct−1C
时(试取)22 21 2 2xt)=1Ct2−1Ct+C2 41
2 2 3xt)=
1Ct3−1Ct2+1t+Ct+C1 21
4 2 4 3 41由始端条件→3=C4=4由末端条件→
1Ct3−1Ct
2+1t
+1=021f
4 2f
2f 41Ct2−1Ct
+1=041f
2 2f 4另:Htf)=01:1= C2=t=39 f于是,λ
1t ⎧2=时,t<02=− ⎨9 ⎩2
=时,t=9在t从0→3段,2
≤1满足条件。故,u*
=−1λ=1=−22 810 1 2 3 4 t习题10 设二阶系统
1t)=−1t)+ut),1()=12t)=1t),
2()=0控制约束为ut)≤1,当系统终端自由时,求最优控制u*t),使性能指标J=21)+2)取极小值,并求最优轨线x*t)。解由题意,f
⎡−1+u⎤= ,
ϕ=x
+x,
L=0, ⇒
H=λu−λx
+λx⎢ ⎥ 1 2
1 11 21⎣ 1 ⎦⎨1由控制方程可得:u*=⎧⎨1⎩
1<01>0⎧
=λ−λ
⇒λ=Cet+C由协态方程可得:⎨
1 1 2 1 2 1⎩2=0ϕ ⎡2⎤
⇒2=1由λt
)= =⎢⎥
⇒C=C
=e1fxtf)f
⎣1⎦ 1 2⎧λ=et1+1→在t>的围内λ>1⇒⎨1 1故:u*=1
t∈[,]
⎩2=1若需计算最优轨线,只需把u*=1代入状态方程,可得:⎧x*t)=e−t−1⎪1⎨x*t)=e−t−t+2⎪2习题11 设系统状态方程为
1t)=2t),1()=10∫性能指标为J=1∫2 0
2t)=ut),∞1(4x2+u2t1
2()=20试用调节器方法确定最优控制u*t)。⎡0 1⎤解:由已条件得:A=⎢ ⎥⎣0 0⎦
⎡0⎤,B=⎢⎥,⎣1⎦
⎡4 0⎤Q=⎢ ⎥⎣0 0⎦
,R=1⎢1 0⎥∵[B B]=⎡⎢1 0⎥⎣ ⎦
,可控——优解存在考虑到
Q=⎡4 0⎤=⎡2⎤[2 0]=DTD,故⎢0 0⎥ ⎢0⎥⎢0 0⎥ ⎢0⎥
D=[2 0]⎡D⎤ ⎡2 0⎤∵⎢ ⎥=⎢ ⎥⎣A⎦ ⎣0 2⎦
∴闭环系统渐近稳定由Ricai程TP+A−R1BTP+Q=0,有⎡0 0⎤⎡1
2⎤+⎡1
2⎤⎡0 1⎤−⎡1
2⎤⎡0⎤[0]⎡1
2⎤+⎡
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度广告发布合同的投放要求与效果评估2篇
- 04版健身中心设备采购与安装合同2篇
- 2024年度七源知识产权商业秘密许可合同
- 2024年度企业销售激励机制劳动合同
- 2024年度汽车销售退货政策合同3篇
- 2024年度智能医疗系统开发及部署合同
- 2024年度艺人经纪合同-影视行业
- 2024年度供应链管理咨询合作协议
- 2024年度白酒生产原料采购合同
- 2024年度甲乙双方关于纺织工厂建设的借款合同
- 2024-2030年全球学前教育行业经营规模研究与投资模式分析研究报告
- 《算法设计与分析基础》(Python语言描述) 课件 第4章分治法2
- 制氢技术与工艺 课件 第8章 生物质能制氢
- 身临其境 课件-2024-2025学年人教版(2024)初中美术七年级上册
- 2024秋期国家开放大学专科《社会调查研究与方法》一平台在线形考(形成性考核一至四)试题及答案
- 旅游行业人才培养需求分析
- 11.2 树立正确的人生目标 (同步课件)-2024-2025学年统编版道德与法治七年级上册
- 经济法学-计分作业二(第1-6章权重25%)-国开-参考资料
- 车联网在线升级( OTA )安全技术要求与测试方法 征求意见稿
- 华能新能源股份有限公司招聘笔试题库2024
- 消费者画像构建与细分
评论
0/150
提交评论