版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为A. B. C. D.2.若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠43.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,若AC=9,则AE的值是()A. B. C.6 D.44.用加减法解方程组时,若要求消去,则应()A. B. C. D.5.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC6.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了()A.25本 B.20本 C.15本 D.10本7.下列图形中,不是中心对称图形的是()A.平行四边形 B.圆 C.等边三角形 D.正六边形8.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③ B.①②④ C.①③④ D.①②③④9.如图,在平面直角坐标系中,点A在x轴的正半轴上,点B的坐标为(0,4),将△ABO绕点B逆时针旋转60°后得到△A'BO',若函数y=(x>0)的图象经过点O',则k的值为()A.2 B.4 C.4 D.810.下列关于x的方程一定有实数解的是()A. B.C. D.11.在同一坐标系中,反比例函数y=与二次函数y=kx2+k(k≠0)的图象可能为()A. B.C. D.12.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x…–2–1012…y…04664…从上表可知,下列说法错误的是A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的二、填空题:(本大题共6个小题,每小题4分,共24分.)13.函数y=中,自变量x的取值范围为_____.14.圆锥体的底面周长为6π,侧面积为12π,则该圆锥体的高为.15.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是______.16.如图,在⊙O中,直径AB⊥弦CD,∠A=28°,则∠D=_______.17.计算:2a×(﹣2b)=_____.18.如图,AB是⊙O的直径,点E是的中点,连接AF交过E的切线于点D,AB的延长线交该切线于点C,若∠C=30°,⊙O的半径是2,则图形中阴影部分的面积是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:÷(﹣1)20.(6分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A,B,W三个空座位,且只有A,B两个座位相邻,若三人随机选择座位,试解决以下问题:(1)甲选择座位W的概率是多少;(2)试用列表或画树状图的方法求甲、乙选择相邻座位A,B的概率.21.(6分)直线y1=kx+b与反比例函数的图象分别交于点A(m,4)和点B(n,2),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)根据图象写出不等式kx+b﹣≤0的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.22.(8分)为评估九年级学生的体育成绩情况,某校九年级500名学生全部参加了“中考体育模拟考试”,随机抽取了部分学生的测试成绩作为样本,并绘制出如下两幅不完整的统计表和频数分布直方图:成绩x分人数频率25≤x<3040.0830≤x<3580.1635≤x<40a0.3240≤x<45bc45≤x<50100.2(1)求此次抽查了多少名学生的成绩;(2)通过计算将频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数.23.(8分)已知矩形ABCD,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD的外部(如图),将半圆O绕点A顺时针旋转α度(0°≤α≤180°)(1)半圆的直径落在对角线AC上时,如图所示,半圆与AB的交点为M,求AM的长;(2)半圆与直线CD相切时,切点为N,与线段AD的交点为P,如图所示,求劣弧AP的长;(3)在旋转过程中,半圆弧与直线CD只有一个交点时,设此交点与点C的距离为d,直接写出d的取值范围.24.(10分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(cos80°≈0.17,sin80°≈0.98,≈1.414)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?25.(10分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.求证:△ADE∽△ABC;若AD=3,AB=5,求的值.26.(12分)新定义:如图1(图2,图3),在△ABC中,把AB边绕点A顺时针旋转,把AC边绕点A逆时针旋转,得到△AB′C′,若∠BAC+∠B′AC′=180°,我们称△ABC是△AB′C′的“旋补三角形”,△AB'C′的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”(特例感知)(1)①若△ABC是等边三角形(如图2),BC=1,则AD=;②若∠BAC=90°(如图3),BC=6,AD=;(猜想论证)(2)在图1中,当△ABC是任意三角形时,猜想AD与BC的数量关系,并证明你的猜想;(拓展应用)(3)如图1.点A,B,C,D都在半径为5的圆上,且AB与CD不平行,AD=6,点P是四边形ABCD内一点,且△APD是△BPC的“旋补三角形”,点P是“旋补中心”,请确定点P的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC的长.27.(12分)如图,在每个小正方形的边长为1的网格中,点A,B,M,N均在格点上,P为线段MN上的一个动点(1)MN的长等于_______,(2)当点P在线段MN上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的,(不要求证明)
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】试题解析:在菱形中,,,所以,,在中,,因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.2、C【解析】试题分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为1求出a的范围即可.解:去分母得:2(2x﹣a)=x﹣2,解得:x=,由题意得:≥1且≠2,解得:a≥1且a≠4,故选C.点睛:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为1.3、C【解析】
由角平分线的定义得到∠CBE=∠ABE,再根据线段的垂直平分线的性质得到EA=EB,则∠A=∠ABE,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【详解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=1.故选C.4、C【解析】
利用加减消元法消去y即可.【详解】用加减法解方程组时,若要求消去y,则应①×5+②×3,
故选C【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5、C【解析】
解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,∴Rt△BCE≌Rt△DCE(HL).∴选项ABD都一定成立.故选C.6、C【解析】
设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,根据题意列出关于x、y的二元一次方程组,求出x、y的值即可.【详解】解:设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,根据题意,得:,解得:,答:甲种笔记本买了25本,乙种笔记本买了15本.故选C.【点睛】本题考查的是二元二次方程组的应用,能根据题意得出关于x、y的二元二次方程组是解答此题的关键.7、C【解析】
根据中心对称图形的定义依次判断各项即可解答.【详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C.【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.8、D【解析】
根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.【详解】E点有4中情况,分四种情况讨论如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α过点E2作AB的平行线,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.【点睛】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.9、C【解析】
根据题意可以求得点O'的坐标,从而可以求得k的值.【详解】∵点B的坐标为(0,4),
∴OB=4,
作O′C⊥OB于点C,
∵△ABO绕点B逆时针旋转60°后得到△A'BO',
∴O′B=OB=4,
∴O′C=4×sin60°=2,BC=4×cos60°=2,
∴OC=2,
∴点O′的坐标为:(2,2),
∵函数y=(x>0)的图象经过点O',
∴2=,得k=4,
故选C.【点睛】本题考查了反比例函数图象上点的坐标特征、坐标与图形的变化,解题的关键是利用数形结合的思想和反比例函数的性质解答.10、A【解析】
根据一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根逐一判断即可得.【详解】A.x2-mx-1=0中△=m2+4>0,一定有两个不相等的实数根,符合题意;
B.ax=3中当a=0时,方程无解,不符合题意;
C.由可解得不等式组无解,不符合题意;
D.有增根x=1,此方程无解,不符合题意;
故选A.【点睛】本题主要考查方程的解,解题的关键是掌握一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根.11、D【解析】
根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.12、C【解析】当x=-2时,y=0,
∴抛物线过(-2,0),
∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;
当x=0时,y=6,
∴抛物线与y轴的交点坐标为(0,6),故B正确;
当x=0和x=1时,y=6,
∴对称轴为x=,故C错误;
当x<时,y随x的增大而增大,
∴抛物线在对称轴左侧部分是上升的,故D正确;
故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、x≠1.【解析】
该函数是分式,分式有意义的条件是分母不等于0,故分母x-1≠0,解得x的范围.【详解】根据题意得:x−1≠0,解得:x≠1.故答案为x≠1.【点睛】本题考查了函数自变量的取值范围,解题的关键是熟练的掌握分式的意义.14、【解析】试题分析:用周长除以2π即为圆锥的底面半径;根据圆锥的侧面积=×侧面展开图的弧长×母线长可得圆锥的母线长,利用勾股定理可得圆锥的高.试题解析:∵圆锥的底面周长为6π,∴圆锥的底面半径为6π÷2π="3,"∵圆锥的侧面积=×侧面展开图的弧长×母线长,∴母线长=2×12π÷6π="4,"∴这个圆锥的高是考点:圆锥的计算.15、1﹣1【解析】
如图所示点B′在以E为圆心EA为半径的圆上运动,当D、B′、E共线时时,此时B′D的值最小,根据勾股定理求出DE,根据折叠的性质可知B′E=BE=1,即可求出B′D.【详解】如图所示点B′在以E为圆心EA为半径的圆上运动,当D、B′、E共线时时,此时B′D的值最小,根据折叠的性质,△EBF≌△EB′F,∴EB′⊥B′F,∴EB′=EB,∵E是AB边的中点,AB=4,∴AE=EB′=1,∵AD=6,∴DE=,∴B′D=1﹣1.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用;确定点B′在何位置时,B′D的值最小是解题的关键.16、34°【解析】分析:首先根据垂径定理得出∠BOD的度数,然后根据三角形内角和定理得出∠D的度数.详解:∵直径AB⊥弦CD,∴∠BOD=2∠A=56°,∴∠D=90°-56°=34°.点睛:本题主要考查的是圆的垂径定理,属于基础题型.求出∠BOD的度数是解题的关键.17、﹣4ab【解析】
根据单项式与单项式的乘法解答即可.【详解】2a×(﹣2b)=﹣4ab.故答案为﹣4ab.【点睛】本题考查了单项式的乘法,关键是根据单项式的乘法法则解答.18、【解析】
首先根据切线的性质及圆周角定理得CE的长以及圆周角度数,进而利用锐角三角函数关系得出DE,AD的长,利用S△ADE﹣S扇形FOE=图中阴影部分的面积求出即可.【详解】解:连接OE,OF、EF,∵DE是切线,∴OE⊥DE,∵∠C=30°,OB=OE=2,∴∠EOC=60°,OC=2OE=4,∴CE=OC×sin60°=∵点E是弧BF的中点,∴∠EAB=∠DAE=30°,∴F,E是半圆弧的三等分点,∴∠EOF=∠EOB=∠AOF=60°,∴OE∥AD,∠DAC=60°,∴∠ADC=90°,∵CE=AE=∴DE=,∴AD=DE×tan60°=∴S△ADE∵△FOE和△AEF同底等高,∴△FOE和△AEF面积相等,∴图中阴影部分的面积为:S△ADE﹣S扇形FOE故答案为【点睛】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出△FOE和△AEF面积相等是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、【解析】
根据分式的混合运算法则把原式进行化简即可.【详解】原式=÷(﹣)=÷=•=.【点睛】本题考查的是分式的混合运算,熟知分式的混合运算的法则是解答此题的关键.20、(1);(2)【解析】
(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得.【详解】解:(1)由于共有A、B、W三个座位,∴甲选择座位W的概率为,故答案为:;(2)画树状图如下:由图可知,共有6种等可能结果,其中甲、乙选择相邻的座位有两种,所以P(甲乙相邻)==.【点睛】此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.21、(1)y=﹣x+6;(2)0<x<2或x>4;(3)点P的坐标为(2,0)或(﹣3,0).【解析】
(1)将点坐标代入双曲线中即可求出,最后将点坐标代入直线解析式中即可得出结论;(2)根据点坐标和图象即可得出结论;(3)先求出点坐标,进而求出,设出点P坐标,最后分两种情况利用相似三角形得出比例式建立方程求解即可得出结论.【详解】解:(1)∵点和点在反比例函数的图象上,,解得,即把两点代入中得,解得:,所以直线的解析式为:;(2)由图象可得,当时,的解集为或.(3)由(1)得直线的解析式为,当时,y=6,,,当时,,∴点坐标为.设P点坐标为,由题可以,点在点左侧,则由可得①当时,,,解得,故点P坐标为②当时,,,解得,即点P的坐标为因此,点P的坐标为或时,与相似.【点睛】此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,用方程的思想和分类讨论的思想解决问题是解本题的关键.22、(1)50;(2)详见解析;(3)220.【解析】
(1)利用1组的人数除以1组的频率可求此次抽查了多少名学生的成绩;(2)根据总数乘以3组的频率可求a,用50减去其它各组的频数即可求得b的值,再用1减去其它各组的频率即可求得c的值,即可把频数分布直方图补充完整;(3)先得到成绩优秀的频率,再乘以500即可求解.【详解】解:(1)4÷0.08=50(名).答:此次抽查了50名学生的成绩;(2)a=50×0.32=16(名),b=50﹣4﹣8﹣16﹣10=12(名),c=1﹣0.08﹣0.16﹣0.32﹣0.2=0.24,如图所示:(3)500×(0.24+0.2)=500×0.44=220(名).答:本次测试九年级学生中成绩优秀的人数是220名.【点睛】本题主要考查数据的收集、处理以及统计图表。23、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.【解析】
(2)连接B′M,则∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的长度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根据相似三角形的性质可求出AM的长度;(2)连接OP、ON,过点O作OG⊥AD于点G,则四边形DGON为矩形,进而可得出DG、AG的长度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,进而可得出△AOP为等边三角形,再利用弧长公式即可求出劣弧AP的长;(3)由(2)可知:△AOP为等边三角形,根据等边三角形的性质可求出OG、DN的长度,进而可得出CN的长度,画出点B′在直线CD上的图形,在Rt△AB′D中(点B′在点D左边),利用勾股定理可求出B′D的长度进而可得出CB′的长度,再结合图形即可得出:半圆弧与直线CD只有一个交点时d的取值范围.【详解】(2)在图2中,连接B′M,则∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=2.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;(2)在图3中,连接OP、ON,过点O作OG⊥AD于点G,∵半圆与直线CD相切,∴ON⊥DN,∴四边形DGON为矩形,∴DG=ON=2,∴AG=AD-DG=2.在Rt△AGO中,∠AGO=90°,AO=2,AG=2,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP为等边三角形,∴==π.(3)由(2)可知:△AOP为等边三角形,∴DN=GO=OA=,∴CN=CD+DN=4+.当点B′在直线CD上时,如图4所示,在Rt△AB′D中(点B′在点D左边),AB′=4,AD=3,∴B′D==,∴CB′=4-.∵AB′为直径,∴∠ADB′=90°,∴当点B′在点D右边时,半圆交直线CD于点D、B′.∴当半圆弧与直线CD只有一个交点时,4-≤d<4或d=4+.【点睛】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的性质、勾股定理以及切线的性质,解题的关键是:(2)利用相似三角形的性质求出AM的长度;(2)通过解直角三角形找出∠OAG=60°;(3)依照题意画出图形,利用数形结合求出d的取值范围.24、(1)小强的头部点E与地面DK的距离约为144.5cm.(2)他应向前9.5cm.【解析】试题分析:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;(2)求出OH、PH的值即可判断;试题解析:解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°=≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66sin45°≈46.53,∴PH≈46.53,∵GN=100cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.25、(1)证明见解析;(2).【解析】
(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可求解.【详解】(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=考点:相似三角形的判定26、(1)①2;②3;(2)AD=12【解析】
(1)①根据等边三角形的性质可得出AB=AC=1、∠BAC=60,结合“旋补三角形”的定义可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三线合一可得出∠ADC′=90°,通过解直角三角形可求出AD的长度;
②由“旋补三角形”的定义可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=AC′,进而可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 施工安全培训
- 【教案】部编语文三上12 总也倒不了的老屋【国家级】一
- 餐饮店员工用工合同的范本
- 中学劳动实践活动课
- 《员工安全教育教案》课件
- 小学四年级数学几百几十数乘以一位数同步考核训练题
- 言语治疗技术课程介绍
- 《央行的中间业务》课件
- 头孢菌素过敏试验法配制皮试液皮试液标准mgml皮试液
- 《品牌形象分析》课件
- 对辊破碎机使用说明书
- 桥梁工程应知应会
- 现代殡葬技术与管理-职业生涯规划
- 2024年大学计算机基础考试题库附答案(完整版)
- 中山大学240英语(单考)历年考研真题及详解
- 广东省智慧高速公路建设指南(2023年版)
- 区块链在财务会计中的应用(山东联盟)智慧树知到期末考试答案2024年
- 口腔放射工作人员培训
- 糖尿病中医治疗及护理
- 经典美术作品赏析智慧树知到期末考试答案2024年
- 建筑施工现场典型安全事故案例
评论
0/150
提交评论