下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省长治市坑东中学2022-2023学年高一数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列语句:(1)两个有共同起点而且相等的向量,其终点必相同;(2)两个有共同终点的向量,一定是共线向量;
(3)向量与向量是共线向量,则点A,B,C,D必在同一条直线上;(4)有向线段就是向量,向量就是有向线段.其中说法错误的个数是()A.1 B.2 C.3 D.4参考答案:C【考点】91:向量的物理背景与概念.【分析】根据题意,结合向量的定义依次分析四个命题,综合即可得答案.【解答】解:根据题意,分析四个命题:对于①、相等向量是大小相等,方向相同的向量,故两个有共同起点而且相等的向量,其终点必相同,正确;对于②、共线向量是指方向相同或相反的向量,两个有共同终点的向量,其方向可能既不相同又不相反,故②错误;对于③、共线向量是指方向相同或相反的向量,向量与向量是共线向量,线段AB和CD平行或共线,故③错误;对于④、有向线段就是向量的表示形式,不能等同于向量,故④错误;四个命题中有3个错误,故选:C.【点评】本题考查向量的基本定义,关键是理解向量的定义.2.
若△ABC的内角A、B、C满足6sinA=4sinB=3sinC,则cosB等于
(
)A.
B.
C.
D.参考答案:D3.已知△ABC中,sinA+2sinBcosC=0,b=c,则tanA的值是(
)A.
B.
C.
D.参考答案:B4.
(本大题8分)计算下列各式的值。(1)(2)参考答案:(1)1
(2)
(1)(2)
5.已知等于()A. B. C. D.参考答案:C试题分析:,故选C.考点:两角和与差的正切.6.已知全集U={0,1,2,3,4,5,6},集合A={0,1,2,3},B={3,4,5},则(?UA)∩B等于A.{3}
B.{4,5}
C.{4,5,6}
D.{0,1,2}参考答案:B由补集的定义可得:,则.本题选择B选项.
7.(5分)设a=cos2°﹣sin2°,b=,c=,则有() A. a<c<b B. a<b<c C. b<c<a D. c<a<b参考答案:D考点: 二倍角的正切.专题: 三角函数的求值.分析: 由两角差的正弦公式求a,由二倍角的正切公式求b,由二倍角的正弦公式求c,即可根据正弦函数的单调性和三角函数线的知识比较大小.解答: ∵a=cos2°﹣sin2°=sin(30°﹣2°)=sin28°,b==tan(14°+14°)=tan28°,c===sin25°,∵正弦函数在(0°,90°)是单调递增的,∴c<a.又∵在(0°,90°)内,正切线大于正弦线,∴a<b.故选:D.点评: 本题主要考查了两角差的正弦公式,二倍角的正切公式,二倍角的正弦公式,正弦函数的单调性和三角函数线的知识应用,属于基础题.8.在等比数列{an}中,a3=,其前三项的和S3=,则数列{an}的公比等于()A.﹣B.C.﹣或1D.或1参考答案:D9.在下列四个函数中,满足性质:“对于区间(1,2)上的任意,不等式恒成立”的只有()A.
B.
C.
D.参考答案:A。10.设,,则等于(
)A.
B.
C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.通项为,又递增,则实数K的取值范围是
参考答案:12.(5分)已知函数f(x)是定义为在R上的奇函数,当x≥0时,f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2),若x∈R,都有f(x﹣1)≤f(x+1)成立,则实数a的取值范围是
.参考答案:[﹣,]考点:函数恒成立问题.专题:计算题;数形结合;分类讨论;函数的性质及应用.分析:由于当x≥0时,f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2).可得当0≤x≤a2时,f(x)=﹣x;当a2<x≤2a2时,f(x)=﹣a2;当x>3a2时,f(x)=x﹣3a2.画出其图象.由于函数f(x)是定义在R上的奇函数,即可画出x<0时的图象.由于x∈R,f(x﹣1)≤f(x+1),即有?x∈R,f(x﹣2)≤f(x),可得6a2≤2,解出即可.解答:∵当x≥0时,f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2).∴当0≤x≤a2时,f(x)=(a2﹣x+2a2﹣x﹣3a2)=﹣x;当a2<x≤2a2时,f(x)=﹣a2;当x>3a2时,f(x)=x﹣3a2.画出其图象.由于函数f(x)是定义在R上的奇函数,即可画出x<0时的图象,与x>0时的图象关于原点对称.∵?x∈R,f(x﹣1)≤f(x+1),即有?x∈R,f(x﹣2)≤f(x),∴6a2≤2,解得﹣≤a.∴实数a的取值范围为[﹣,].故答案为:[﹣,].点评:本题考查了函数奇偶性、周期性,考查了分类讨论的思想方法,考查了数形结合的思想方法,考查了推理能力与计算能力,属于中档题.13.函数在区间[0,1]上的最大值和最小值之和为
.参考答案:4略14.函数的图象恒过定点在幂函数的图象上,则
参考答案:6415.记实数x1,x2,…,xn中的最大数为max{x1,x2,…,xn},最小数为min{x1,x2,…,xn},则max{min{x+1,x2﹣x+1,﹣x+6}}=.参考答案:【考点】函数的最值及其几何意义.【专题】综合题;函数思想;数形结合法;函数的性质及应用.【分析】在同一坐标系中作出三个函数y=x+1,y=x2﹣x+1与y=﹣x+6的图象,依题意,即可求得max{min{x+1,x2﹣x+1,﹣x+6}}.【解答】解:在同一坐标系中作出三个函数y=x+1,y=x2﹣x+1与y=﹣x+6的图象如图:由图可知,min{x+1,x2﹣x+1,﹣x+6}为射线AM,抛物线ANB,线段BC,与射线CT的组合体,显然,在C点时,y=min{x+1,x2﹣x+1,﹣x+6}取得最大值.解方程组得,C(,),∴max{min{x+1,x2﹣x+1,﹣x+6}}=.故答案为:.【点评】题考查函数的最值及其几何意义,在同一坐标系中作出三个函数y=x+1,y=x2﹣x+1与y=﹣x+6的图象是关键,也是难点,属于中档题.16.
参考答案:17.在△ABC中,∠C是钝角,设则的大小关系是___________________________。参考答案:
解析: 三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,△ABC的三个内角A,B,C对应的三条边长分别是a,b,c,,,,.(Ⅰ)求sinA的值;(Ⅱ)求的面积.参考答案:(Ⅰ);(Ⅱ).【分析】(Ⅰ)先求出a=2,即得A=C,再利用求出sinA;(Ⅱ)先求出CD,再求的面积.【详解】(Ⅰ)由及余弦定理得:,可知为等腰三角形,即,所以,解得.(Ⅱ)由可知,在中,,.三角形面积.【点睛】本题主要考查余弦定理和三角恒等变换,考查三角形的面积的求解,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.已知幂函数f(x)=(﹣2m2+m+2)xm+1为偶函数.(1)求f(x)的解析式;(2)若函数y=f(x)﹣2(a﹣1)x+1在区间(2,3)上为单调函数,求实数a的取值范围.参考答案:【考点】函数奇偶性的性质;函数单调性的性质.【专题】函数的性质及应用.【分析】(1)根据幂函数的性质即可求f(x)的解析式;(2)根据函数y=f(x)﹣2(a﹣1)x+1在区间(2,3)上为单调函数,利用二次函数对称轴和区间之间的关系即可,求实数a的取值范围.【解答】解:(1)由f(x)为幂函数知﹣2m2+m+2=1,即2m2﹣m﹣1=0,得m=1或m=﹣,当m=1时,f(x)=x2,符合题意;当m=﹣时,f(x)=,为非奇非偶函数,不合题意,舍去.∴f(x)=x2.(2)由(1)得y=f(x)﹣2(a﹣1)x+1=x2﹣2(a﹣1)x+1,即函数的对称轴为x=a﹣1,由题意知函数在(2,3)上为单调函数,∴对称轴a﹣1≤2或a﹣1≥3,即a≤3或a≥4.【点评】本题主要考查幂函数的图象和性质,以及二次函数的单调性与对称轴之间的关系,要求熟练掌握幂函数和二次函数的图象和性质.20.(10分)已知函数f(x)=3x,g(x)=|x+a|﹣3,其中a∈R.(Ⅰ)若函数h(x)=f[g(x)]的图象关于直线x=2对称,求a的值;(Ⅱ)给出函数y=g[f(x)]的零点个数,并说明理由.参考答案:【考点】函数零点的判定定理;利用导数研究函数的单调性.【分析】(Ⅰ)函数h(x)=f[g(x)]=3|x+a|﹣3的图象关于直线x=2对称,则h(4﹣x)=h(x)?|x+a|=|4﹣x+a|恒成立?a=﹣2;(Ⅱ)函数y=g[f(x)]=|3x+a|﹣3的零点个数,就是函数G(x)=|3x+a|与y=3的交点,分①当0≤a<3时;②当a≥3时;③﹣3≤a<0时;④当a<﹣3时,画出图象判断个数.【解答】解:(Ⅰ)函数h(x)=f[g(x)]=3|x+a|﹣3的图象关于直线x=2对称,则h(4﹣x)=h(x)?|x+a|=|4﹣x+a|恒成立?a=﹣2;(Ⅱ)函数y=g[f(x)]=|3x+a|﹣3的零点个数,就是函数G(x)=|3x+a|与y=3的交点,①当0≤a<3时,G(x)=|3x+a|=3x+a与y=3的交点只有一个,即函数y=g[f(x)]的零点个数为1个(如图1);②当a≥3时,G(x)=|3x+a|=3x+a与y=3没有交点,即函数y=g[f(x)]的零点个数为0个(如图1);③﹣3≤a<0时,G(x)=|3x+a|与y=3的交点只有1个(如图2);④当a<﹣3时,G(x)=|3x+a|与y=3的交点有2个(如图2);【点评】本题考查了函数的零点,把零点个数转化为两函数交点个数是常用方法,属于中档题.21.、、是同一平面内的三个向量,其中=(1,2),=(﹣2,3),=(﹣2,m).(1)若⊥()求||;(2)若k+与2﹣共线,求k的值.参考答案:【考点】96:平行向量与共线向量;9R:平面向量数量积的运算.【分析】(1)根据向量的坐标的运算法则和向量垂直的条件,以及模的定义即可求出.(2)根据向量共线的条件即可求出.【解答】解:(1)∵=(1,2),=(﹣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度专业版私人二手房购买协议3篇
- 2024-2030年中国大豆水解蛋白市场现状分析及前景趋势预测报告
- 2024-2030年中国城市地下管线探测行业需求趋势预测发展规划研究报告
- 2024-2030年中国垃圾发电项目可行性研究报告
- 2024-2030年中国地热采暖专用地板产业未来发展趋势及投资策略分析报告
- 2024-2030年中国土地储备产业发展状况规划研究报告
- 2024年度人工智能领域股权补偿协议3篇
- 2024年度校园物业管理及优化合同版B版
- 2024年物联网技术应用开发合作协议
- 马鞍山职业技术学院《数据库应用技术案例》2023-2024学年第一学期期末试卷
- 2023年自考传播学概论试题及答案
- GB/T 18277-2000公路收费制式
- 2023年住院医师规范化培训胸外科出科考试
- 11468工作岗位研究原理与应用第7章
- 2023实施《中华人民共和国野生动物保护法》全文学习PPT课件(带内容)
- 2022年初级育婴师考试题库附答案
- 系统家庭疗法课件
- 新版GSP《医疗器械经营质量管理规范》培训试题
- 初中道德与法治答题技巧课件
- 河北省保定市药品零售药店企业药房名单目录
- 广西基本医疗保险门诊特殊慢性病申报表
评论
0/150
提交评论