下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省朔州市私立中学高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数若,则实数a的取值范围是()A.(-∞,-1)∪(2,+∞) B.(-1,2)C.(-2,1) D.(-∞,-2)∪(1,+∞)参考答案:C因为函数为R上单调递增奇函数,所以由f(2-a2)>f(a)得,选C.点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内2.已知等比数列的公比为正数,且,,则(
)A.
B.
C.
D.2参考答案:B3.“”是“直线和直线互相平行”的(
)条件充分不必要
必要不充分
充分必要
既不充分又不必要参考答案:C略4.请.从下面具体的例子中说明几个基本的程序框和它们各自表示的功能,并把它填在相应的括号内.参考答案:
5.在椭圆内有一点P(1,-1),F为椭圆右焦点,在椭圆上有一点M,使|MP|+2|MF|的值最小,则这一最小值是(
)A.
B.
C.3
D.4参考答案:C6.下列给出的赋值语句中正确的是(
)A.3=A
B.
M=-M
C.
B=A=2
D.
参考答案:B7.若为实数,则下列命题正确的是(
)A.若,则
B.若,则C.若,则
D.若,则参考答案:B8.已知圆锥的底面半径为3,母线长为12,那么圆锥侧面展开图所成扇形的圆心角为A.180°
B.120°
C.90°
D.135°参考答案:C9.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-,那么|PF|=
()A.4
B.8
C.8
D.16参考答案:B10.命题甲:双曲线C的渐近线方程是:y=±;命题乙:双曲线C的方程是:,那么甲是乙的(
)A.充分而不必要条件
B.必要而不充分条件C.充分必要条件
D.既不充分也不必要条件参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.点P在直线上,O为原点,则|的最小值是
参考答案:略12.已知平面区域,若向区域内随机投一点,则点落入区域的概率为
参考答案:略13.由曲线xy=1及直线y=x,y=2所围成的平面图形的面积为_______________。参考答案:-ln214.数列{}是等差数列,=7,则=_________参考答案:49略15.将(2x2﹣x+1)8展开且合并同类项之后的式子中x5的系数是.参考答案:﹣1288【考点】DB:二项式系数的性质.【分析】x5可能是(﹣x)5,(2x2)(﹣x)3,(2x2)2(﹣x),由此利用排列组合知识能求出将(2x2﹣x+1)8展开且合并同类项之后的式子中x5的系数.【解答】解:x5可能是(﹣x)5,(2x2)(﹣x)3,(2x2)2(﹣x),根据排列组合知识来看(﹣x)5表示在8个式子中5个选﹣x,其余3个选出1,系数为:(﹣1)5?=﹣56,(2x2)(﹣x)3表示8个式子中1个选2x2,其余7个中3个选(﹣x),其余选1,系数为:=﹣560,(2x2)2(﹣x)表示8个式子中2个选2x2,其余6个中选1个(﹣x),其余选1,系数为:=﹣672,∴将(2x2﹣x+1)8展开且合并同类项之后的式子中x5的系数为:﹣56﹣560﹣672=﹣1288.故答案为:﹣1288.【点评】本题考查二项式展开式中x5的系数的求法,考查二项式定理、通项公式、二项式系数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.16.把正整数按上小下大、左小右大的原则排成如图三角形数表(每行比上一行多一个数):设(i、j∈N*)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,如=8.则为
参考答案:200717.下面的程序运行后的结果为__________(其中:“(a+j)mod
5”表示整数(a+j)除以5的余数)参考答案:0三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.用秦九韶算法求多项式当时的值。写出其算法,写出相应的程序语句.参考答案:
无19.已知函数.(1)若是函数的极值点,试求实数a的值并求函数的单调区间;(2)若恒成立,试求实数a的取值范围.参考答案:(1)1,函数的单调减区间为函数的单调增区间为;(2).【分析】(1)先写出函数的定义域,求出函数的导函数,计算,求出的值即可;再解不等式和,进而求得函数的单调区间;(2)由恒成立,得到恒成立,即,再令,应用导数求得其最大值,得到结果.【详解】(1)函数的定义域为又,由题意,,当时,令得,令得,所以函数的单调减区间为函数的单调增区间为,此时函数取极小值故符合题意;(2)由恒成立得恒成立,又定义域为,所以恒成立即,令则,令得所以函数在上单调增,在单调减,函数,所以.【点睛】该题考查的是应用导数研究函数的问题,涉及到的知识点有利用极值点求参数,应用导数研究函数的单调性,应用导数研究恒成立问题,属于中档题目.20.已知圆C经过点A(1,1)和B(4,﹣2),且圆心C在直线l:x+y+1=0上.(Ⅰ)求圆C的标准方程;(Ⅱ)设M,N为圆C上两点,且M,N关于直线l对称,若以MN为直径的圆经过原点O,求直线MN的方程.参考答案:【考点】直线和圆的方程的应用.【分析】(Ⅰ)根据题意,分析可得圆C的圆心是线段AB的垂直平分线与直线l的交点,先求出线段AB的垂直平分线的方程,与直线l联立可得圆心C的坐标,进而可得圆的半径,即可得答案;(Ⅱ)设以MN为直径的圆的圆心为P,半径为r,可以设p的坐标为(m,﹣1﹣m),结合直线与圆的位置关系可得(m﹣1)2+(m﹣1)2+m2+(m+1)2=9,解得m的值,即可得p的坐标,分析可得直线MN的斜率为1,由直线的点斜式方程可得答案.【解答】解:(Ⅰ)∵A(1,1),B(4,﹣2)∴直线AB的斜率…∴直线AB的垂直平分线的斜率为1…又线段AB的中点坐标为∴线段AB的垂直平分线的方程是,即x﹣y﹣3=0…∵圆心C在直线l:x+y+1=0上∴圆心C的坐标是方程组的解,得圆心C的坐标(1,﹣2)…∴圆C的半径长…∴圆C的标准方程是(x﹣1)2+(y+2)2=9…(Ⅱ)设以MN为直径的圆的圆心为P,半径为r∵M,N是圆C上的两点,且M,N关于直线l:x+y+1=0对称∴点P在直线l:x+y+1=0上∴可以设点P坐标为(m,﹣1﹣m)…∵以MN为直径的圆经过原点O∴以MN为直径的圆的半径长…∵MN是圆C的弦,∴|CP|2+r2=9,即(m﹣1)2+(m﹣1)2+m2+(m+1)2=9,解得m=﹣1或∴点P坐标为(﹣1,0)或…∵直线MN垂直直线l:x+y+1=0,∴直线MN的斜率为1…∴直线MN的方程为:x﹣y+1=0或x﹣y﹣4=0…21.从中任取2个数,从中任取2个数,⑴能组成多少个没有重复数字的四位数?⑵若将⑴中所有个位是的四位数从小到大排成一列,则第个数是多少?参考答案:⑴不用0时,有个;用0时,有个;共有个四位数.
……⑵①“1**5”,中间所缺的两数只能从中选排,有个;②“2**5”,中间所缺的两数是奇偶数各一个,有个;③“3**5”,仿“1**5”,也有个;④“4**5”,仿“2**5”,也有个;⑤“6**5”也有个;即小于的数共有个.故第个数是,第个数是,第个数是,第个数是.
……22.如图,在正方体ABCD﹣A1B1C1D1中,(1)画出二面角A﹣B1C﹣C1的平面角(2)求证:面BB1DD1⊥面A1B1C1D1.参考答案:【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)取B1C的中点O,则∠AOC1就是二面角A﹣B1C﹣C1的平面角.(2)推导出BB1⊥A1C1,A1C1⊥B1D1,从而A1C1⊥面BB1DD1,由此能证明面BB1DD1⊥面A1B1C1D1.【解答】解:(1)取B1C的中点O,则∠AOC1就是二面角A﹣B1C﹣C1的平面角.理由如下:∵在正方体ABCD﹣A1B1C1D1中,AB1=A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 对企业有利的加班合同(2篇)
- 二零二五年智能家电技术服务合同范本3篇
- 宜宾酒王二零二五年度800亿控量保价市场占有率提升合同2篇
- 二零二五年度酒店会议住宿套餐定制合同2篇
- 2025年度电子信息产业设备采购与技术服务合同3篇
- 二零二五版工程款分期支付还款协议合同范本3篇
- 二零二五版碧桂园集团施工合同示范文本6篇
- 二零二五版豆腐出口贸易代理合同3篇
- 二零二五年度韵达快递业务承包合同及综合运营支持协议3篇
- 2024年物流运输承包合同3篇
- 《文化苦旅》读书分享 PPT
- 氧化铝生产工艺教学拜耳法
- 2023年十八项医疗核心制度考试题与答案
- 气管切开患者气道湿化的护理进展资料 气管切开患者气道湿化
- 管理模板:某跨境电商企业组织结构及部门职责
- 底架总组装工艺指导书
- 简单临时工劳动合同模板(3篇)
- 聚酯合成反应动力学
- 自动控制原理全套课件
- 上海科技大学,面试
- 《五年级奥数总复习》精编课件
评论
0/150
提交评论