版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于高中数学必修一函数知识点与典型例题总结经典适合高一或高三复习第一页,共九十四页,2022年,8月28日数与形,本是相倚依焉能分作两边飞数无形时少直觉形少数时难入微数形结合百般好隔离分家万事休切莫忘,几何代数统一体永远联系莫分离
——华罗庚第二页,共九十四页,2022年,8月28日集合基本关系含义与表示基本运算列举法描述法包含相等并集交集补集图示法
一、知识结构第三页,共九十四页,2022年,8月28日一、集合的含义与表示1、集合:把研究对象称为元素,把一些元素组成的总体叫做集合2、元素与集合的关系:3、元素的特性:确定性、互异性、无序性(一)集合的含义第四页,共九十四页,2022年,8月28日(二)集合的表示1、列举法:把集合中的元素一一列举出来,并放在{}内2、描述法:用文字或公式等描述出元素的特性,并放在{x|}内3.图示法Venn图,数轴第五页,共九十四页,2022年,8月28日二、集合间的基本关系1、子集:对于两个集合A,B如果集合A中的任何一个元素都是集合B的元素,我们称A为B的子集.
若集合中元素有n个,则其子集个数为真子集个数为非空真子集个数为2、集合相等:3、空集:规定空集是任何集合的子集,是任何非空集合的真子集2n2n-12n-2第六页,共九十四页,2022年,8月28日三、集合的并集、交集、全集、补集全集:某集合含有我们所研究的各个集合的全部元素,用U表示AB第七页,共九十四页,2022年,8月28日0或2题型示例考查集合的含义第八页,共九十四页,2022年,8月28日考查集合之间的关系第九页,共九十四页,2022年,8月28日考查集合的运算第十页,共九十四页,2022年,8月28日123453第十一页,共九十四页,2022年,8月28日返回第十二页,共九十四页,2022年,8月28日
1.设,其中,如果,求实数a的取值范围
扩展提升第十三页,共九十四页,2022年,8月28日2.设全集为R,集合,(1)求:A∪B,CR(A∩B);(数轴法)(2)若集合,满足,求实数a的取值范围。
第十四页,共九十四页,2022年,8月28日{}211-,,=M2.已知集合集合则M∩N是()AB{1}C{1,2}DΦ{},,MxxyyNÎ==2练习1.集合A={1,0,x},且x2∈A,则x=
。3.满足{1,2}A{1,2,3,4}的集合A的个数有
个-1B3第十五页,共九十四页,2022年,8月28日函数定义域奇偶性图象值域单调性函数的复习主要抓住两条主线1、函数的概念及其有关性质。2、几种初等函数的具体性质。二次函数指数函数对数函数反比例函数一次函数幂函数第十六页,共九十四页,2022年,8月28日函数函数的概念函数的基本性质函数的单调性函数的最值函数的奇偶性函数知识结构第十七页,共九十四页,2022年,8月28日BCx1x2x3x4x5y1y2y3y4y5y6A函数的三要素:定义域,值域,对应法则A.B是两个非空的数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫做从A到B的一个函数。一、函数的概念:思考:函数值域与集合B的关系第十八页,共九十四页,2022年,8月28日二、映射的概念设A,B是两个非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y于之对应,那么就称对应f:A→B为集合A到集合B的一个映射映射是函数的一种推广,本质是:任一对唯一第十九页,共九十四页,2022年,8月28日函数的定义域:使函数有意义的x的取值范围。求定义域的主要依据1、分式的分母不为零.2、偶次方根的被开方数不小于零.3、零次幂的底数不为零.4、对数函数的真数大于零.5、指、对数函数的底数大于零且不为1.6、实际问题中函数的定义域第二十页,共九十四页,2022年,8月28日(一)函数的定义域1、具体函数的定义域1.【-1,2)∪(2,+∞)2.(-∞,-1)∪(1,+∞)3.(3∕4,1】第二十一页,共九十四页,2022年,8月28日练习:第二十二页,共九十四页,2022年,8月28日
2、抽象函数的定义域1)已知函数y=f(x)的定义域是[1,3],求f(2x-1)的定义域2)已知函数y=f(x)的定义域是[0,5),求g(x)=f(x-1)-f(x+1)的定义域3)1.[1,2];2.[1,4);3.[-]第二十三页,共九十四页,2022年,8月28日思考:若值域为R呢?分析:值域为R等价为真数N能取(0,+∞)每个数。当a=0时,N=3只是(0,+∞)上的一个数,不成立;当a≠0时,真数N取(0,+∞)每个数即第二十四页,共九十四页,2022年,8月28日求值域的一些方法:
1、图像法,2、配方法,3、分离常数法,4、换元法,5单调性法。1)2)3)4)第二十五页,共九十四页,2022年,8月28日三、函数的表示法1、解析法2、列表法3、图象法
第二十六页,共九十四页,2022年,8月28日例10求下列函数的解析式待定系数法换元法第二十七页,共九十四页,2022年,8月28日(5)已知:对于任意实数x、y,等式恒成立,求赋值法
构造方程组法
(4)已知,求的解析式配凑法第二十八页,共九十四页,2022年,8月28日增函数、减函数、单调函数是对定义域上的某个区间而言的。注意三、函数单调性定义:一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量x1、x2,当x1<x2时,都有f(x1)<f(x2)
,那么就说函数在区间上是增函数。区间D叫做函数的增区间。如果对于定义域I内某个区间D上的任意两个自变量x1、x2,当x1<x2时,都有f(x1)>f(x2)
,那么就说函数在区间上是减函数。区间D叫做函数的减区间。第二十九页,共九十四页,2022年,8月28日写出常见函数的单调区间并指明是增区间还是减区间1、函数的单调区间是
2、函数y=ax+b(a≠0)的单调区间是3、函数y=ax2+bx+c(a≠0)的单调区间是第三十页,共九十四页,2022年,8月28日用定义证明函数单调性的步骤:(1)设元,设x1,x2是区间上任意两个实数,且x1<x2;(2)作差,f(x1)-f(x2);(3)变形,通过因式分解转化为易于判断符号的形式(4)判号,判断f(x1)-f(x2)的符号;(5)下结论.第三十一页,共九十四页,2022年,8月28日1.函数f(x)=2x+1,(x≥1)4-x,(x<1)则f(x)的递减区间为()A.[1,+∞)B.(-∞,1)C.(0,+∞)D.(-∞,0]B2、若函数f(x)=x2+2(a-1)x+2在区间[4,+∞)上是增函数,求实数a的取值范围小试身手?3
判断函数的单调性。第三十二页,共九十四页,2022年,8月28日拓展提升复合函数的单调性复合函数的定义:设y=f(u)定义域A,u=g(x)值域为B,若AB,则y关于x函数的y=f[g(x)]叫做函数f与g的复合函数,u叫中间量第三十三页,共九十四页,2022年,8月28日复合函数的单调性复合函数的单调性由两个函数共同决定;引理1:已知函数y=f[g(x)],若u=g(x)在区间(a,b)上是增函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是增函数。x增→g(x)增→y增:故可知y随着x的增大而增大引理2:已知函数y=f[g(x)],若u=g(x)在区间(a,b)上是减函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是减函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是增函数。x增→g(x)减→y增:故可知y随着x的增大而增大第三十四页,共九十四页,2022年,8月28日复合函数的单调性若u=g(x)增函数减函数增函数减函数y=f(u)增函数减函数减函数增函数则y=f[g(x)]增函数增函数减函数减函数规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不相同时,其复合函数是减函数。“同增异减”第三十五页,共九十四页,2022年,8月28日复合函数的单调性例题:求下列函数的单调性y=log4(x2-4x+3)解设
y=log4u(外函数),u=x2-4x+3(内函数).由u>0,u=x2-4x+3,解得原复合函数的定义域为{x|x<1或x>3}.当x∈(-∞,1)时,u=x2-4x+3为减函数,而y=log4u为增函数,所以(-∞,1)是复合函数的单调减区间;当x∈(3,±∞)时,u=x2-4x+3为增函数y=log4u为增函数,所以,(3,+∞)是复合函数的单调增区间.第三十六页,共九十四页,2022年,8月28日解:设u=x2-4x+3,u=x2-4x+3=(x-2)2-1,x>3或x<1,(复合函数定义域)x<2
(u减)解得x<1.所以x∈(-∞,1)时,函数u单调递减.由于y=log4u在定义域内是增函数,所以由引理知:u=(x-2)2-1的单调性与复合函数的单调性一致,所以(-∞,1)是复合函数的单调减区间.u=x2-4x+3=(x-2)2-1,x>3或x<1,(复合函数定义域)x>2
(u增)解得x>3.所以(3,+∞)是复合函数的单调增区间.
代数解法:第三十七页,共九十四页,2022年,8月28日解:设y=logu,u=2x-x2.由u>0,u=2x-x2
解得原复合函数的定义域为0<x<2.
由于y=log13u在定义域(0,+∞)内是减函数,所以,原复合函数的单调性与二次函数u=2x-x2的单调性正好相反.易知u=2x-x2=-(x-1)2+1在x≤1时单调增.由0<x<2(复合函数定义域)
x≤1,(u增)解得0<x≤1,所以(0,1]是原复合函数的单调减区间.
又u=-(x-1)2+1在x≥1时单调减,由
x<2,(复合函数定义域)
x≥1,(u减)
解得0≤x<2,所以[0,1=是原复合函数的单调增区间.例2求下列复合函数的单调区间:
y=log(2x-x2)第三十八页,共九十四页,2022年,8月28日例题:求函数的单调性。解:设,f(u)和u(x)的定义域均为R因为,u在上递减,在上递增。而在R上是减函数。所以,在上是增函数。在上是减函数。第三十九页,共九十四页,2022年,8月28日例4:求的单调区间.解:设由u∈R,u=x2-2x-1,
解得原复合函数的定义域为x∈R.因为在定义域R内为减函数,所以由二次函数u=x2-2x-1的单调性易知,u=x2-2x-1=(x-1)2-2在x≤1时单调减,由
x∈R,
(复合函数定义域)
x≤1,(u减)解得x≤1.所以(-∞,1]是复合函数的单调增区间.同理[1,+∞)是复合函数的单调减区间.
第四十页,共九十四页,2022年,8月28日复合函数的单调性小结复合函数y=f[g(x)]的单调性可按下列步骤判断:(1)将复合函数分解成两个简单函数:y=f(u)与u=g(x)。其中y=f(u)又称为外层函数,u=g(x)称为内层函数;(2)确定函数的定义域;(3)分别确定分解成的两个函数的单调性;(4)若两个函数在对应的区间上的单调性相同(即都是增函数,或都是减函数),则复合后的函数y=f[g(x)]为增函数;(5)若两个函数在对应的区间上的单调性相异(即一个是增函数,而另一个是减函数),则复合后的函数y=f[g(x)]为减函数。
复合函数的单调性可概括为一句话:“同增异减”。第四十一页,共九十四页,2022年,8月28日四、函数的奇偶性1.奇函数:对任意的,都有2.偶函数:对任意的,都有3.奇函数和偶函数的必要条件:注:要判断函数的奇偶性,首先要看其定义域区间是否关于原点对称!定义域关于原点对称.第四十二页,共九十四页,2022年,8月28日奇(偶)函数的一些特征1.若函数f(x)是奇函数,且在x=0处有定义,则f(0)=0.2.奇函数图像关于原点对称,且在对称的区间上不改变单调性.3.偶函数图像关于y轴对称,且在对称的区间上改变单调性第四十三页,共九十四页,2022年,8月28日例12判断下列函数的奇偶性第四十四页,共九十四页,2022年,8月28日第四十五页,共九十四页,2022年,8月28日第四十六页,共九十四页,2022年,8月28日第四十七页,共九十四页,2022年,8月28日函数的图象1、用学过的图像画图。2、用某种函数的图象变形而成。(1)关于x轴、y轴、原点对称关系。(2)平移关系。(3)绝对值关系。第四十八页,共九十四页,2022年,8月28日反比例函数1、定义域
.2、值域3、图象k>0k<0第四十九页,共九十四页,2022年,8月28日二次函数1、定义域
.2、值域3、图象a>0a<0第五十页,共九十四页,2022年,8月28日指数函数1、定义域
.2、值域3、图象a>10<a<1R+yxo1yxo1第五十一页,共九十四页,2022年,8月28日对数函数1、定义域
.2、值域3、图象a>10<a<1R+yxoyxo11第五十二页,共九十四页,2022年,8月28日
在同一平面直角坐标系内作出幂函数y=x,y=x2,y=x3,y=x1/2,y=x-1的图象:第五十三页,共九十四页,2022年,8月28日(-∞,0)减(-∞,0]减(1,1)(1,1)(1,1)(1,1)(1,1)公共点(0,+∞)减增增[0,+∞)增增单调性奇非奇非偶奇偶奇奇偶性{y|y≠0}[0,+∞)R[0,+∞)R值域{x|x≠0}[0,+∞)RRR定义域y=x-1y=x3y=x2y=x
函数性质幂函数的性质21xy=第五十四页,共九十四页,2022年,8月28日对号函数(a>0)的性质及应用第五十五页,共九十四页,2022年,8月28日.函数(a>0)的大致图像xy0第五十六页,共九十四页,2022年,8月28日获取新知
利用所掌握的函数知识,探究函数
(a>0)的性质.1.定义域2.奇偶性(-∞,0)∪(0,+∞)
奇函数f(-x)=-f(x)第五十七页,共九十四页,2022年,8月28日3.确定函数(a>0)的单调区间⑴.当x∈(0,+∞)时,确定某单调区间第五十八页,共九十四页,2022年,8月28日第五十九页,共九十四页,2022年,8月28日⑵.当x∈(-∞,0)时,确定某单调区间综上,函数(a>0)的单调
区间是单调区间的分界点为:a的平方根第六十页,共九十四页,2022年,8月28日4.函数(a>0)的大致图像xy0第六十一页,共九十四页,2022年,8月28日5.函数(a>0)的值域第六十二页,共九十四页,2022年,8月28日运用知识1.已知函数第六十三页,共九十四页,2022年,8月28日第六十四页,共九十四页,2022年,8月28日2.已知函数,求f(x)的最小值,并
求此时的x值.第六十五页,共九十四页,2022年,8月28日3.建筑一个容积为800米3,深8米的长方体水池(无盖).池壁,池底造价分别为a元/米2和2a元/米2.底面一边长为x米,总造价为y.写出y与x的函数式,问底面边长x为何值时总造价y最低,是多少?第六十六页,共九十四页,2022年,8月28日第六十七页,共九十四页,2022年,8月28日函数图象与变换1.平移变换(1)水平方向的变换:y=f(x+a)的图象可由y=f(x)的图象沿x轴向左平移(a>0)或向右平移(a<0)|a|个单位而得到.(2)竖直方向的变换:y=f(x)+b的图象可由y=f(x)的图象沿y轴向上平移(b>0)或向下平移(b<0)|b|个单位而得到.第六十八页,共九十四页,2022年,8月28日2.对称变换(1)y=f(x)与y=f(-x)的图象关于y轴对称.(2)y=f(x)与y=-f(x)的图象关于x轴对称.(3)y=f(x)与y=-f(-x)的图象关于原点对称.(4)y=|f(x)|的图象是保留y=f(x)图象中位于x轴上方的部分及与x轴的交点,将y=f(x)的图象中位于x轴下方的部分翻折到x轴上方去而得到.(5)y=f(|x|)的图象是保留y=f(x)中位于y轴右边部分及与y轴的交点,去掉y轴左边部分而利用偶函数的性质,将y轴右边部分以y轴为对称轴翻折到y轴左边去而得到.第六十九页,共九十四页,2022年,8月28日第七十页,共九十四页,2022年,8月28日(2)先作函数y=x2-2x的位于x轴上方的图象,再作x轴下方图象关于x轴对称的图象,得函数y=|x2-2x|的图象,如图所示.第七十一页,共九十四页,2022年,8月28日(3)先作函数y=x2-2x位于y轴右边的图象,再作关于y轴对称的图象,得到函数y=x2-2|x|的图象,如图所示.第七十二页,共九十四页,2022年,8月28日例作函数的图象yxo1yxo1第七十三页,共九十四页,2022年,8月28日抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如类比法、赋值法添、拆项
等)。高考题和平时的模拟题中经常出
现。抽象性较强;综合性强;灵活性强;
难度大。
没有具体给出函数解析式但给出某些函数特性或相应条件的函数概念题型特点解题思路抽象函数问题第七十四页,共九十四页,2022年,8月28日一、研究函数性质“赋值”策略
对于抽象函数,根据函数的概念和性质,通过观察与分析,将变量赋予特殊值,以简化函数,从而达到转化为要解决的问题的目的。第七十五页,共九十四页,2022年,8月28日(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 齿箱全流程清洁度控制措施
- 版权购买授权合同书
- 防控疾病我们共同的责任
- 保密协议对企业的保护作用
- 新车购销合同版
- 企业信誉保障书
- 基础版购销协议案例
- 供货商及时保证
- 招标文件加固的专家论坛
- 茶叶税务咨询合同
- 2024医师定期考核临床医学试题
- 川剧讲解课件
- 24春国家开放大学《学前儿童美术教育活动指导》期末大作业参考答案
- 2023-2024学年深圳市初三中考适应性考试语文试题(含答案)
- 毕业设计结题验收报告
- 热水袋烫伤RCA分析2022
- 思想道德与法治(海南大学)智慧树知到期末考试答案2024年
- 文创产品设计学生总结
- 竣工结算审计服务 投标方案(技术方案)
- 南京电动自行车火灾事故案例过程与思考
- 中学学科基地常规管理制度(4篇)
评论
0/150
提交评论