版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年四川省成都市四川天府新区太平中学高一上学期期末数学试题一、单选题1.已知集合,,则(
)A. B. C. D.【答案】D【分析】根据并集概念进行求解.【详解】.故选:D2.已知,且为第二象限角,则(
)A. B. C. D.【答案】A【分析】根据同角三角函数基本公式计算即可.【详解】由题意得,所以.故选:A.3.在半径为2的圆中,弧度的圆心角所对的弧长为(
)A. B. C. D.以上都不对【答案】A【分析】根据公式(其中为圆心角的弧度数,为弧长,为半径)即可求解.【详解】因为,所以,故选:A.4.“”是“”的(
)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】B【分析】根据一元二次不等式的解集,结合充分性、必要性的定义求解即可.【详解】由解得或,所以是必要不充分条件,故选:B.5.下列函数中,既是偶函数又在上单调递减的是(
)A. B. C.y=|x| D.【答案】D【分析】判断每个函数的奇偶性与单调性得答案.【详解】,都是奇函数,排除A,B.,都是偶函数,在上递增,在递减,故选:D.6.设,则a,b,c的大小顺序为(
)A. B. C. D.【答案】A【分析】根据函数单调性及中间值比较大小.【详解】因为单调递增,所以,因为单调递减,所以,,即,因为,所以,即,综上:.故选:A7.定义在上的偶函数满足:对于任意的,都有,则(
)A. B.C. D.【答案】C【分析】根据函数奇偶性、单调性判断出正确答案.【详解】是偶函数,且对于任意的,都有,所以在上递增,则在上递减,,而,所以.故选:C8.我们可以把(1+1%)看作每天的“进步"率都是1%,一年后是;而把(1-1%)365看作每天的“落后”率都是,一年后是,可以计算得到,一年后的“进步”是“落后"的,倍,如果每天的“进步"率和“落后”率都是,大约经过(
)天后,“进步”是“落后”的10000倍A.17 B.18 C.21 D.23【答案】D【分析】根据“进步”与“落后”的比不小于列不等式,解不等式求得正确答案.【详解】经过天后,“进步”与“落后”的比,,两边取以为底的对数得,,,所以大于经过天后,“进步”是“落后”的10000倍.故选:D二、多选题9.设,某学生用二分法求方程的近似解(精确度为),列出了它的对应值表如下:0123若依据此表格中的数据,则得到符合要求的方程的近似解可以为(
)A.1.31 B.1.38 C.1.43 D.1.44【答案】BC【分析】f(x)在R上是增函数,根据零点存在性定理进行判断零点所在的区间﹒【详解】与都是上的单调递增函数,是上的单调递增函数,在上至多有一个零点,由表格中的数据可知:,在上有唯一零点,零点所在的区间为,即方程有且仅有一个解,且在区间内,,内的任意一个数都可以作为方程的近似解,,符合要求的方程的近似解可以是和1.43﹒故选:BC﹒10.已知函数,则函数的零点是(
)A.-1 B.0 C.1 D.2【答案】ABC【分析】令,根据的范围求解即可.【详解】令,当时,有,则;当时,有,则;当时,有,则;故函数的零点是故选:ABC11.下列命题正确的是(
)A.若,则 B.若,则C.若,,则 D.若,则【答案】AC【分析】利用基本不等式的使用法则:“一正二定三相等”即可判断出结论.【详解】解:.由于,,当且仅当时取等号,因此正确;.时,,故错误;.,,则,当且仅当时取等号,故正确;对D,若时,不等式不成立,故错误;故选:AC12.下列说法中正确为(
)A.已知函数,若,有成立,则实数a的值为4B.若关于x的不等式恒成立,则k的取值范围为C.设集合,则“”是“”的充分不必要条件D.函数与函数是同一个函数【答案】AC【分析】根据函数的对称性,可求得a值,即可判断A的正误;分别讨论和两种情况,结合二次型函数的性质,可判断B的正误;根据集合的包含关系及充分、必要条件的概念,可判断C的正误;根据同一函数的定义,可判断D的正误,即可得答案.【详解】对于A:由成立,可得函数的对称轴为,又二次函数的对称轴为,所以,解得,故A正确;对于B:当时,可得成立,满足题意,当时,可得,解得,综上k的取值范围为,故B错误;对于C:当时,,所以,充分性成立,若,则或,解得或,必要性不成立,所以“”是“”的充分不必要条件,故C正确;对于D:函数定义域为R,函数的定义域为,定义域不同,故不是同一函数,故D错误,故选:AC三、填空题13.命题“”的否定是__________.【答案】【分析】根据全称量词命题的否定为存在量词命题即可得解.【详解】解:命题“”是全称量词命题,其否定是.故答案为:.14.如果幂函数的图象过点,那么______.【答案】【分析】设出幂函数解析式,由已知点坐标求得幂函数解析式,然后求函数值.【详解】设,由已知,则,∴,.故答案为:.15.已知函数,则=_________【答案】##【分析】求出、的值即得解.【详解】由题得..所以.故答案为:16.若函数在区间上的最小值为4,则的取值集合为______.【答案】【分析】分类讨论,,三种情况即可.【详解】函数,对称轴为,当,即时,,即,解得或(舍去),当,即时,,不符合题意,舍去,当时,,即,解得或(舍去),故的取值集合为.故答案为:四、解答题17.计算下列各式的值:(1);(2).【答案】(1)(2)【分析】(1)根据指数、根式运算求得正确答案.(2)根据对数运算求得正确答案.【详解】(1)(2).18.设函数.(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由.【答案】(1)(2)偶函数,理由见解析【分析】(1)由求解即可;(2)由偶函数定义即可判断【详解】(1)由解得函数的定义域为;(2)为偶函数.由,定义域关于原点对称,得函数为偶函数19.已知角的终边经过点,(1)求值;(2)求的值.【答案】(1)(2)【分析】(1)根据点坐标求出正余弦三角函数值结合诱导公式和同角的三角函数关系即可求出结果;(2)直接代入正余弦值即可.【详解】(1)由题意,,则原式;(2)原式.20.已知函数在区间上的最大值与最小值之和为7.(1)求a的值;(2)证明:函数是上的增函数.【答案】(1)(2)证明见解析【分析】(1)根据单调性代入计算即可;(2)根据定义法证明函数为增函数即可.【详解】(1)因为在区间上单调递增,所以函数在区间上的最大值与最小值之和为,所以,解得,又因为,所以.(2)由(1)知,,任取,且,则.因为,所以,,所以,即,所以是上的增函数.21.长江存储是我国唯一一家能够独立生产3DNAND闪存的公司,其先进的晶栈Xtacking技术使得3DNAND闪存具有极佳的性能和极长的寿命.为了应对第四季度3DNAND闪存颗粒库存积压的情况,某闪存封装公司拟对产能进行调整,已知封装闪存的固定成本为300万元,每封装万片,还需要万元的变动成本,通过调研得知,当不超过120万片时,;当超过120万片时,,封装好后的闪存颗粒售价为150元/片,且能全部售完.(1)求公司获得的利润的函数解析式;(2)当封装多少万片时,公司可获得最大利润?最大的利润是多少?【答案】(1)(2)封装160万片时,公司可获得最大利润730(万元).【分析】(1)根据题意即可写出分段函数;(2)由二次函数性质以及基本不等式即可求得最大值.【详解】(1)总利润=总售价—总成本,由题意可知:总售价为(万元),总成本为(万元),所以总利润,化简得:.(2)当时,,函数图像开口朝下,对称轴为,故的最大值为(万元);当时,,当且仅当,即时,等号成立.因为,则封装160万片时,公司可获得最大利润,最大利润为730(万元).22.已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度夫妻双方婚内财产共有权益维护与分割协议
- 2024年玩具出口企业采购合同范本3篇
- 2025年度城市更新拆迁房产分割及安置补偿协议书
- 2025年度反担保合同范本:私募基金投资风险控制反担保协议2篇
- 传真件合同纠纷的律师实务
- 企业网络信息化建设合同
- 水浒传经典故事解读
- 2024年电动窗帘市场调查与分析合同
- 银川科技学院《遗传学实验技术》2023-2024学年第一学期期末试卷
- 银川科技学院《经济博弈论及其应用》2023-2024学年第一学期期末试卷
- 共享农场建设计划书
- 短债基金入门技巧知识讲座
- 国开法律职业伦理期末复习资料
- 海南物流行业发展趋势分析报告
- 移相变压器计算程序标准版
- 期末测试(试题)-三年级数学上册人教版
- 药剂科门诊中成西药房利用PDCA循环降低门诊药房调剂内差发生率品管圈QCC成果汇报
- 物料员工作计划与总结
- 浙江省金华市2023年九年级上学期期末数学试题附答案
- 京东2023审计报告
- 2023年江苏省普通高中学业水平测试生物试卷
评论
0/150
提交评论