版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3 C. D.22.若复数满足,则()A. B. C.2 D.3.若复数满足,则的虚部为()A.5 B. C. D.-54.已知是双曲线的两个焦点,过点且垂直于轴的直线与相交于两点,若,则的内切圆半径为()A. B. C. D.5.函数f(x)=lnA. B. C. D.6.我国古代数学名著《九章算术》有一问题:“今有鳖臑(biēnaò),下广五尺,无袤;上袤四尺,无广;高七尺.问积几何?”该几何体的三视图如图所示,则此几何体外接球的表面积为()A.平方尺 B.平方尺C.平方尺 D.平方尺7.设,且,则()A. B. C. D.8.已知等差数列的前n项和为,,则A.3 B.4 C.5 D.69.已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为()A. B. C. D.10.如图,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E为AD的中点,若,则λ+μ的值为()A. B. C. D.11.将函数的图象向右平移个周期后,所得图象关于轴对称,则的最小正值是()A. B. C. D.12.已知抛物线:的焦点为,过点的直线交抛物线于,两点,其中点在第一象限,若弦的长为,则()A.2或 B.3或 C.4或 D.5或二、填空题:本题共4小题,每小题5分,共20分。13.在中,,,,则__________.14.已知不等式组所表示的平面区域为,则区域的外接圆的面积为______.15.已知多项式的各项系数之和为32,则展开式中含项的系数为______.16.若,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,内角,,所对的边分别是,,,,,.(Ⅰ)求的值;(Ⅱ)求的值.18.(12分)如图,三棱锥中,(1)证明:面面;(2)求二面角的余弦值.19.(12分)已知二阶矩阵A=abcd,矩阵A属于特征值λ1=-1的一个特征向量为α120.(12分)已知椭圆的右焦点为,直线被称作为椭圆的一条准线,点在椭圆上(异于椭圆左、右顶点),过点作直线与椭圆相切,且与直线相交于点.(1)求证:.(2)若点在轴的上方,当的面积最小时,求直线的斜率.附:多项式因式分解公式:21.(12分)设实数满足.(1)若,求的取值范围;(2)若,,求证:.22.(10分)已知函数,的最大值为.求实数b的值;当时,讨论函数的单调性;当时,令,是否存在区间,,使得函数在区间上的值域为?若存在,求实数k的取值范围;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.2、D【解析】
把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.【详解】解:由题意知,,,∴,故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法.3、C【解析】
把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】由(1+i)z=|3+4i|,得z,∴z的虚部为.故选C.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.4、B【解析】
首先由求得双曲线的方程,进而求得三角形的面积,再由三角形的面积等于周长乘以内切圆的半径即可求解.【详解】由题意将代入双曲线的方程,得则,由,得的周长为,设的内切圆的半径为,则,故选:B【点睛】本题考查双曲线的定义、方程和性质,考查三角形的内心的概念,考查了转化的思想,属于中档题.5、C【解析】因为fx=lnx2-4x+4x-23=6、A【解析】
根据三视图得出原几何体的立体图是一个三棱锥,将三棱锥补充成一个长方体,此长方体的外接球就是该三棱锥的外接球,由球的表面积公式计算可得选项.【详解】由三视图可得,该几何体是一个如图所示的三棱锥,为三棱锥外接球的球心,此三棱锥的外接球也是此三棱锥所在的长方体的外接球,所以为的中点,设球半径为,则,所以外接球的表面积,故选:A.【点睛】本题考查求几何体的外接球的表面积,关键在于由几何体的三视图得出几何体的立体图,找出外接球的球心位置和半径,属于中档题.7、C【解析】
将等式变形后,利用二次根式的性质判断出,即可求出的范围.【详解】即故选:C【点睛】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.8、C【解析】
方法一:设等差数列的公差为,则,解得,所以.故选C.方法二:因为,所以,则.故选C.9、A【解析】
根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.10、B【解析】
建立平面直角坐标系,用坐标表示,利用,列出方程组求解即可.【详解】建立如图所示的平面直角坐标系,则D(0,0).不妨设AB=1,则CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得则.故选:B【点睛】本题主要考查了由平面向量线性运算的结果求参数,属于中档题.11、D【解析】
由函数的图象平移变换公式求出变换后的函数解析式,再利用诱导公式得到关于的方程,对赋值即可求解.【详解】由题意知,函数的最小正周期为,即,由函数的图象平移变换公式可得,将函数的图象向右平移个周期后的解析式为,因为函数的图象关于轴对称,所以,即,所以当时,有最小正值为.故选:D【点睛】本题考查函数的图象平移变换公式和三角函数诱导公式及正余弦函数的性质;熟练掌握诱导公式和正余弦函数的性质是求解本题的关键;属于中档题、常考题型.12、C【解析】
先根据弦长求出直线的斜率,再利用抛物线定义可求出.【详解】设直线的倾斜角为,则,所以,,即,所以直线的方程为.当直线的方程为,联立,解得和,所以;同理,当直线的方程为.,综上,或.选C.【点睛】本题主要考查直线和抛物线的位置关系,弦长问题一般是利用弦长公式来处理.出现了到焦点的距离时,一般考虑抛物线的定义.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
由已知利用余弦定理可得,即可解得的值.【详解】解:,,,由余弦定理,可得,整理可得:,解得或(舍去).故答案为:1.【点睛】本题主要考查余弦定理在解三角形中的应用,属于基础题.14、【解析】
先作可行域,根据解三角形得外接圆半径,最后根据圆面积公式得结果.【详解】由题意作出区域,如图中阴影部分所示,易知,故,又,设的外接圆的半径为,则由正弦定理得,即,故所求外接圆的面积为.【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离、可行域面积、可行域外接圆等等,最后结合图形确定目标函数最值取法、值域范围.15、【解析】
令可得各项系数和为,得出,根据第一个因式展开式的常数项与第二个因式的展开式含一次项的积与第一个因式展开式含x的一次项与第二个因式常数项的积的和即为展开式中含项,可得解.【详解】令,则得,解得,所以展开式中含项为:,故答案为:【点睛】本题主要考查了二项展开式的系数和,二项展开式特定项,赋值法,属于中档题.16、【解析】
因为,由二倍角公式得到,故得到.故答案为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根据正弦定理先求得边c,然后由余弦定理可求得边b;(Ⅱ)结合二倍角公式及和差公式,即可求得本题答案.【详解】(Ⅰ)因为,由正弦定理可得,,又,所以,所以根据余弦定理得,,解得,;(Ⅱ)因为,所以,,,则.【点睛】本题主要考查利用正余弦定理解三角形,以及利用二倍角公式及和差公式求值,属基础题.18、(1)证明见解析(2)【解析】
(1)取中点,连结,证明平面得到答案.(2)如图所示,建立空间直角坐标系,为平面的一个法向量,平面的一个法向量为,计算夹角得到答案.【详解】(1)取中点,连结,,,,,为直角,,平面,平面,∴面面.(2)如图所示,建立空间直角坐标系,则,可取为平面的一个法向量.设平面的一个法向量为.则,其中,,不妨取,则..为锐二面角,∴二面角的余弦值为.【点睛】本题考查了面面垂直,二面角,意在考查学生的计算能力和空间想象能力.19、A=【解析】
运用矩阵定义列出方程组求解矩阵A【详解】由特征值、特征向量定义可知,Aα即abc同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩阵【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单20、(1)证明见解析(2)【解析】
(1)由得令可得,进而得到,同理,利用数量积坐标计算即可;(2),分,两种情况讨论即可.【详解】(1)证明:点的坐标为.联立方程,消去后整理为有,可得,,.可得点的坐标为.当时,可求得点的坐标为,,.有,故有.(2)若点在轴上方,因为,所以有,由(1)知①因为时.由(1)知,由函数单调递增,可得此时.②当时,由(1)知令由,故当时,,此时函数单调递增:当时,,此时函数单调递减,又由,故函数的最小值,函数取最小值时,可求得.由①②知,若点在轴上方,当的面积最小时,直线的斜率为.【点睛】本题考查直线与椭圆的位置关系,涉及到分类讨论求函数的最值,考查学生的运算求解能力,是一道难题.21、(1)(2)证明见解析【解析】
(1)依题意可得,考虑到,则有再分类讨论可得;(2)要证明,即证,即证.利用基本不等式即可得证;【详解】解:(1)由及,得,考虑到,则有,它可化为或即或前者无解,后者的解集为,综上,的取值范围是.(2)要证明,即证,由,得,即证.因为(当且仅当,时取等号).所以成立,故成立.【点睛】本题考查分类讨论法解绝对值不等式,基本不等式的应用,属于中档题.22、(1);(2)时,在单调增;时,在单调递减,在单调递增;时,同理在单调递减,在单调递增;(3)不存在.【解析】分析:(1)利用导数研究函数的单调性,可得当时,取得极大值,也是最大值,由,可得结果;(2)求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(3)假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程在区间内是否存在两个不相等的实根,进而可得结果.详解:(1)由题意得,令,解得,当时,,函数单调递增;当时,,函数单调递减.所以当时,取得极大值,也是最大值,所以,解得.(2)的定义域为.①即,则,故在单调增②若,而,故,则当时,;当及时,故在单调递减,在单调递增.③若,即,同理在单调递减,在单调递增(3)由(1)知,所以,令,则对恒成立,所以在区间内单调递增,所以恒成立,所以函数在区间内单调递增.假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程在区间内是否存在两个不相等的实根,即方程在区间内是否存在两个不相等的实根,令,,则,设,,则对恒成立,所以函数在区间内单调递增,故恒成立,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年伐木劳务承包合同范本大全
- 2024年出售建筑砖头合同范本大全
- 2024年出口车架采购合同范本
- 丝印应用技术培训
- 2024年贵金属复合材料(含微型、异型)项目成效分析报告
- 2024年运输代理服务项目评估分析报告
- 2024至2030年中国高精度光电跟踪铣槽机数据监测研究报告
- 2024年财务公司服务项目综合评估报告
- 2024至2030年中国金属纤维涤纶高强度圆筒除尘袋行业投资前景及策略咨询研究报告
- 2024至2030年中国营养茶数据监测研究报告
- 健康领域核心经验解读与活动指导课件
- 安全教育主题班会模板
- 《原电池》上课课件(全国优质课获奖案例)
- 《隋朝的统一与灭亡》-完整版课件
- 学校结核病防治知识培训课件
- 微课脚本设计表
- 工业漆水性丙烯酸防护msds
- 小学数学人教版五年级下册《3.1.1 长方体和正方体的认识》课件
- 仓储管理第2章仓库规划与布局设计
- 胃癌临床表现与鉴别诊断治疗精编ppt
- 培养箱产品3q验证方案模板
评论
0/150
提交评论