2023届湖北省稳派教育高考仿真模拟数学试卷含解析_第1页
2023届湖北省稳派教育高考仿真模拟数学试卷含解析_第2页
2023届湖北省稳派教育高考仿真模拟数学试卷含解析_第3页
2023届湖北省稳派教育高考仿真模拟数学试卷含解析_第4页
2023届湖北省稳派教育高考仿真模拟数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年高考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义在上的函数满足,则()A.-1 B.0 C.1 D.22.设函数,则函数的图像可能为()A. B. C. D.3.设为非零实数,且,则()A. B. C. D.4.水平放置的,用斜二测画法作出的直观图是如图所示的,其中,则绕AB所在直线旋转一周后形成的几何体的表面积为()A. B. C. D.5.宁波古圣王阳明的《传习录》专门讲过易经八卦图,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“—”表示一根阳线,“——”表示一根阴线).从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为()A. B. C. D.6.函数在上的图象大致为()A. B. C. D.7.已知双曲线与双曲线没有公共点,则双曲线的离心率的取值范围是()A. B. C. D.8.已知,,则等于().A. B. C. D.9.已知的内角的对边分别是且,若为最大边,则的取值范围是()A. B. C. D.10.已知函数,若,则下列不等关系正确的是()A. B.C. D.11.已知复数为虚数单位),则z的虚部为()A.2 B. C.4 D.12.已知函数的图象向左平移个单位后得到函数的图象,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.定义在R上的函数满足:①对任意的,都有;②当时,,则函数的解析式可以是______________.14.已知双曲线的右准线与渐近线的交点在抛物线上,则实数的值为___________.15.已知关于的不等式对于任意恒成立,则实数的取值范围为_________.16.已知函数,则不等式的解集为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)解不等式;(2)若函数最小值为,且,求的最小值.18.(12分)已知函数(,为自然对数的底数),.(1)若有两个零点,求实数的取值范围;(2)当时,对任意的恒成立,求实数的取值范围.19.(12分)已知a,b∈R,设函数f(x)=(I)若b=0,求f(x)的单调区间:(II)当x∈[0,+∞)时,f(x)的最小值为0,求a+5b的最大值.注:20.(12分)设直线与抛物线交于两点,与椭圆交于两点,设直线(为坐标原点)的斜率分别为,若.(1)证明:直线过定点,并求出该定点的坐标;(2)是否存在常数,满足?并说明理由.21.(12分)已知函数.(1)设,若存在两个极值点,,且,求证:;(2)设,在不单调,且恒成立,求的取值范围.(为自然对数的底数).22.(10分)已知非零实数满足.(1)求证:;(2)是否存在实数,使得恒成立?若存在,求出实数的取值范围;若不存在,请说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

推导出,由此能求出的值.【详解】∵定义在上的函数满足,∴,故选C.【点睛】本题主要考查函数值的求法,解题时要认真审题,注意函数性质的合理运用,属于中档题.2、B【解析】

根据函数为偶函数排除,再计算排除得到答案.【详解】定义域为:,函数为偶函数,排除,排除故选【点睛】本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧.3、C【解析】

取,计算知错误,根据不等式性质知正确,得到答案.【详解】,故,,故正确;取,计算知错误;故选:.【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.4、B【解析】

根据斜二测画法的基本原理,将平面直观图还原为原几何图形,可得,,绕AB所在直线旋转一周后形成的几何体是两个相同圆锥的组合体,圆锥的侧面展开图是扇形根据扇形面积公式即可求得组合体的表面积.【详解】根据“斜二测画法”可得,,,绕AB所在直线旋转一周后形成的几何体是两个相同圆锥的组合体,它的表面积为.故选:【点睛】本题考查斜二测画法的应用及组合体的表面积求法,难度较易.5、B【解析】

根据古典概型的概率求法,先得到从八卦中任取两卦基本事件的总数,再找出这两卦的六根线中恰有四根阴线的基本事件数,代入公式求解.【详解】从八卦中任取两卦基本事件的总数种,这两卦的六根线中恰有四根阴线的基本事件数有6种,分别是(巽,坤),(兑,坤),(离,坤),(震,艮),(震,坎),(坎,艮),所以这两卦的六根线中恰有四根阴线的概率是.故选:B【点睛】本题主要考查古典概型的概率,还考查了运算求解的能力,属于基础题.6、C【解析】

根据函数的奇偶性及函数在时的符号,即可求解.【详解】由可知函数为奇函数.所以函数图象关于原点对称,排除选项A,B;当时,,,排除选项D,故选:C.【点睛】本题主要考查了函数的奇偶性的判定及奇偶函数图像的对称性,属于中档题.7、C【解析】

先求得的渐近线方程,根据没有公共点,判断出渐近线斜率的取值范围,由此求得离心率的取值范围.【详解】双曲线的渐近线方程为,由于双曲线与双曲线没有公共点,所以双曲线的渐近线的斜率,所以双曲线的离心率.故选:C【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的取值范围的求法,属于基础题.8、B【解析】

由已知条件利用诱导公式得,再利用三角函数的平方关系和象限角的符号,即可得到答案.【详解】由题意得,又,所以,结合解得,所以,故选B.【点睛】本题考查三角函数的诱导公式、同角三角函数的平方关系以及三角函数的符号与位置关系,属于基础题.9、C【解析】

由,化简得到的值,根据余弦定理和基本不等式,即可求解.【详解】由,可得,可得,通分得,整理得,所以,因为为三角形的最大角,所以,又由余弦定理,当且仅当时,等号成立,所以,即,又由,所以的取值范围是.故选:C.【点睛】本题主要考查了代数式的化简,余弦定理,以及基本不等式的综合应用,试题难度较大,属于中档试题,着重考查了推理与运算能力.10、B【解析】

利用函数的单调性得到的大小关系,再利用不等式的性质,即可得答案.【详解】∵在R上单调递增,且,∴.∵的符号无法判断,故与,与的大小不确定,对A,当时,,故A错误;对C,当时,,故C错误;对D,当时,,故D错误;对B,对,则,故B正确.故选:B.【点睛】本题考查分段函数的单调性、不等式性质的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.11、A【解析】

对复数进行乘法运算,并计算得到,从而得到虚部为2.【详解】因为,所以z的虚部为2.【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意.12、A【解析】

首先求得平移后的函数,再根据求的最小值.【详解】根据题意,的图象向左平移个单位后,所得图象对应的函数,所以,所以.又,所以的最小值为.故选:A【点睛】本题考查三角函数的图象变换,诱导公式,意在考查平移变换,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13、(或,答案不唯一)【解析】

由可得是奇函数,再由时,可得到满足条件的奇函数非常多,属于开放性试题.【详解】在中,令,得;令,则,故是奇函数,由时,,知或等,答案不唯一.故答案为:(或,答案不唯一).【点睛】本题考查抽象函数的性质,涉及到由表达式确定函数奇偶性,是一道开放性的题,难度不大.14、【解析】

求出双曲线的渐近线方程,右准线方程,得到交点坐标代入抛物线方程求解即可.【详解】解:双曲线的右准线,渐近线,双曲线的右准线与渐近线的交点,交点在抛物线上,可得:,解得.故答案为.【点睛】本题考查双曲线的简单性质以及抛物线的简单性质的应用,是基本知识的考查,属于基础题.15、【解析】

先将不等式对于任意恒成立,转化为任意恒成立,设,求出在内的最小值,即可求出的取值范围.【详解】解:由题可知,不等式对于任意恒成立,即,又因为,,对任意恒成立,设,其中,由不等式,可得:,则,当时等号成立,又因为在内有解,,则,即:,所以实数的取值范围:.故答案为:.【点睛】本题考查不等式恒成立问题,利用分离参数法和构造函数,通过求新函数的最值求出参数范围,考查转化思想和计算能力.16、【解析】

,,分类讨论即可.【详解】由已知,,,若,则或解得或,所以不等式的解集为.故答案为:【点睛】本题考查分段函数的应用,涉及到解一元二次不等式,考查学生的计算能力,是一道中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)利用零点分段法,求得不等式的解集.(2)先求得,即,再根据“的代换”的方法,结合基本不等式,求得的最小值.【详解】(1)当时,,即,无解;当时,,即,得;当时,,即,得.故所求不等式的解集为.(2)因为,所以,则,.当且仅当即时取等号.故的最小值为.【点睛】本小题主要考查零点分段法解绝对值不等式,考查利用基本不等式求最值,考查化归与转化的数学思想方法,属于中档题.18、(1);(2)【解析】

(1)将有两个零点转化为方程有两个相异实根,令求导,利用其单调性和极值求解;(2)将问题转化为对一切恒成立,令,求导,研究单调性,求出其最值即可得结果.【详解】(1)有两个零点关于的方程有两个相异实根由,知有两个零点有两个相异实根.令,则,由得:,由得:,在单调递增,在单调递减,又当时,,当时,当时,有两个零点时,实数的取值范围为;(2)当时,,原命题等价于对一切恒成立对一切恒成立.令令,,则在上单增又,,使即①当时,,当时,,即在递减,在递增,由①知函数在单调递增即,实数的取值范围为.【点睛】本题考查利用导数研究函数的单调性,极值,最值问题,考查学生转化能力和分析能力,是一道难度较大的题目.19、(I)详见解析;(II)2【解析】

(I)求导得到f'(x)=ex-a,讨论a≤0(II)f12=e-12a-5【详解】(I)f(x)=ex-ax当a≤0时,f'(x)=e当a>0时,f'(x)=ex-a=0,x=lna当x∈lna,+∞时,综上所述:a≤0时,fx在R上单调递增;a>0时,fx在-∞,ln(II)f(x)=ex-ax-bf12=现在证明存在a,b,a+5b=2e取a=3e4,b=f'(x)=ex-a-故当x∈0,+∞上时,x2+1f'x在x∈0,+∞上单调递增,故fx在0,12上单调递减,在1综上所述:a+5b的最大值为【点睛】本题考查了函数单调性,函数的最值问题,意在考查学生的计算能力和综合应用能力.20、(1)证明见解析(0,2);(2)存在,理由见解析【解析】

(1)设直线l的方程为y=kx+b代入抛物线的方程,利用OA⊥OB,求出b,即可知直线过定点(2)由斜率公式分别求出,,联立直线与抛物线,椭圆,再由根与系数的关系得,,,代入,,化简即可求解.【详解】(1)证明:由题知,直线l的斜率存在且不过原点,故设由可得,.,,故所以直线l的方程为故直线l恒过定点.(2)由(1)知设由可得,,即存在常数满足题意.【点睛】本题主要考查了直线与抛物线、椭圆的位置关系,直线过定点问题,考查学生分析解决问题的能力,属于中档题.21、(1)证明见解析;(2).【解析】

(1)先求出,又由可判断出在上单调递减,故,令,记,利用导数求出的最小值即可;(2)由在上不单调转化为在上有解,可得,令,分类讨论求的最大值,再求解即可.【详解】(1)已知,,由可得,又由,知在上单调递减,令,记,则在上单调递增;,在上单调递增;,(2),,在上不单调,在上有正有负,在上有解,,,恒成立,记,则,记,,在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论