矩阵学习心得体会_第1页
矩阵学习心得体会_第2页
矩阵学习心得体会_第3页
矩阵学习心得体会_第4页
矩阵学习心得体会_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

矩阵学习心得体会篇一:在线性代数的基本知识基础上,我通过矩阵的学习,系统地掌握了矩阵的基本理论和基本方法,进一步深化和提高矩阵的理论知识,掌握各种矩阵分解的计算方法,了解矩阵的各种应用,其主要内容包括矩阵的基本理论,矩阵特征值和特征向量的计算,矩阵分解及其应用,矩阵的概念,了解单位阵、对角距阵、三角矩阵、零矩阵、数量矩阵、对角距阵等。这些内容与方法是许多应用学科的重要工具。矩阵的应用是多方面的,不仅在数学领域里,而且在力学、物理、科技等方面都十分广泛的应用。我通过学习得知,矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的,而矩阵本身所具有的性质是依赖于元素的。在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。矩阵和行列式是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法。利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的向量;这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等一系列理论上的问题,就都可以得到彻底的解决。矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。矩阵这一概念由19世纪英国数学家凯利首先提出。矩阵概念在生产实践中也有许多应用,比如矩阵图法以及保护个人帐号的矩阵卡系统(有深圳网域提出)等等。矩阵的现代概念在19世纪逐渐形成。1801年德国数学家高斯把一个线性变换的全部系数作为一个整体。1844年,德国数学家爱森斯坦讨论了“变换”(矩阵)及其乘积。1850年,英国数学家西尔维斯特首先使用矩阵一词。1858年,英国数学家凯莱发表《关于矩阵理论的研究报告》。他首先将矩阵作为一个独立的数学对象加以研究,并在这个主题上首先发表了一系列文章,因而被认为是矩阵论的创立者,他给出了现在通用的一系列定义,如两矩阵相等、零矩阵、单位矩阵、两矩阵的和、一个数与一个矩阵的数量积、两个矩阵的积、矩阵的逆、转置矩阵等。并且凯莱还注意到矩阵的乘法是可结合的,但一般不可交换,且m*n矩阵只能用n*k矩阵去右乘。1854年,法国数学家埃米尔特使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由德国数学家费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。皆--•矩阵的现代概念在19世纪逐渐形成。1801年德国数学家高斯把一个线性变换的全部系数作为一个整体。1844年,德国数学家爱森斯坦讨论了“变换”(矩阵)及其乘积。1850年,英国数学家西尔维斯特首先使用矩阵一词。1858年,英国数学家凯莱发表《关于矩阵理论的研究报告》。他首先将矩阵作为一个独立的数学对象加以研究,并在这个主题上首先发表了一系列文章,因而被认为是矩阵论的创立者,他给出了现在通用的一系列定义,如两矩阵相等、零矩阵、单位矩阵、两矩阵的和、一个数与一个矩阵的数量积、两个矩阵的积、矩阵的逆、转置矩阵等。并且凯莱还注意到矩阵的乘法是可结合的,但一般不可交换,且m*n矩阵只能用n*k矩阵去右乘。1854年,法国数学家埃米尔特使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由德国数学家费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。通过这次在朱善华老师的课程上我了解了很多获益匪浅,我通过矩阵的学习,系统地掌握了矩阵的基本理论和基本方法,进一步深化和提高矩阵的理论知识,掌握各种矩阵分解的计算方法,了解矩阵的各种应用,其主要内容包括矩阵的基本理论,矩阵特征值和特征向量的计算,矩阵分解及其应用,矩阵的概念,了解单位阵、对角距阵、三角矩阵、零矩阵、数量矩阵、对角距阵等。这些内容与方法是许多应用学科的重要工具。矩阵的应用是多方面的,不仅在数学领域里,而且在力学、物理、科技等方面都十分广泛的应用。我通过学习得知,矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的,而矩阵本身所具有的性质是依赖于元素的。在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。矩阵和行列式是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法。利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的向量;这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等一系列理论上的问题,就都可以得到彻底的解决。认识总是随着时间和已有知识的积累在不断修正,我对矩阵论的认识也大致如此。从一开始的认为只能解线性方程,到如今发现它的几乎无所不能,我想我收获到的不仅仅是这种简单的知识,更是一种世界观,那就是对所有的事物都不要轻易地下定论。同时,当我们知道的越多,就会发现未知的东西越多。作为一门已经发展了一百多年的学科,我对矩阵论的认识只是沧海一粟,唯有终身学习,不断探索,才可能真正领悟到其中之真谛,我亦将为此付诸行动。扁二:2011-2012第一学期,我在李胜坤老师的引领下,逐步学习了科学出版社出版、徐仲和张凯院等编著的《矩阵论简明教程》第二版。该书是大学本科期间所学习的《线性代数》的矩阵部分内容的深化,从数域扩展到矩阵,要想充分理解“矩阵论”的精髓,就得先好好的将《线性代数》复习一一掌握其基本概念及重要定理、结论。该书有8个章节,第一章是矩阵的相似变换,第二章讲的是范数理论,第三章介绍的是矩阵分析,第四章详细介绍的是矩阵分解,第五章罗列的是特征值的估计与表示,第六章介绍的是广义逆矩阵,第七章介绍的是矩阵的直积,最后一章介绍的是线性空间与线性变换。下面分章节谈论。第一章中的特征值与特征向量、矩阵的相似对角化、向量内积是本科期间《线性代数》中的内容,我想作者的目的是借助以前大家都熟悉的知识,将我们引领到另一个崭新的知识领域,起到承上启下的作用,让我们对《矩阵论》感到不陌生。该章中的Judan标准形、Hamilton-Cayley定理、酉相似的标准形是本科期间不曾深入学习的知识,这些知识为后续学习《矩阵论》吹响了号角。总之,第一章就是高等数学中的知识与“矩阵论”的衔接章节,同时也是后续章节学习的非常重要基础章节。我们要学好《矩阵论》就得学好该章,理解记忆其中的概念、结论。第二章介绍向量范数与矩阵范数及其应用。介绍了向量范数的三公理、酉不变性、1范、2范、无穷范、p范、加权范数(也叫椭圆范数)以及很重要的一个不等式Cauchy-Schwarz不等式、向量的收敛、发散性;矩阵范数的定义、ml范、川无穷范、F范及其酉不变性,矩阵范数与向量范数的相容性等。范数与矩阵的谱半径紧紧相连,有了范数作为研究矩阵的数学工具,我们将会更易更深入的理解、研究矩阵,并用矩阵指导实际生产实践。第三章矩阵分析和第四章矩阵分解各是矩阵论的最重要章节之一。通过对矩阵的收敛性、矩阵级数、矩阵函数、矩阵微分、矩阵积分、矩阵四种分解等系统性学习研究,让我明白了矩阵理论在实际生活中的巨大作用一一矩阵论将大大减少工程运算量及提高计算速度、精度。有了矩阵理论作指导,现实生活中很多不能解决或者很难解决的数学问题等都能够得到很好的解决。比如,提高计算机的计算速度、优化数字信号处理算法等。第五章介绍了矩阵的非常重要的参数一一特征值的估计及其表示,介绍了特征值界定估计、特征值包含区域等,让我们对特征值有了更进一步的了解,用书中的方法可以很高效的确定特征值的范围、估计特征值的个数。是研究矩阵的有效方法,为计算特征值指明了方向,解决了以前计算特征值的困扰。第六章介绍的是广义逆矩阵,是逆矩阵的推广。广义逆矩阵是将可逆的方阵推广到不可逆矩阵、长方矩阵。介绍了广义逆矩阵的概念、逆矩阵的应用、Moor-Penrose逆A+的计算、性质以及在解线性方程组中的应用。我想该章更大的应用应该在解线性方程组中,解决生活中的计算问题,提供了又一高效办法。第七章矩阵的直积是很易懂的知识,是以前向量直积在矩阵中的推广。对矩阵直积的研究对信号处理与系统理论中的随机静态分析与随机向量过程分析等有重要的指导作用,同时也是重要的数学工具,是研究信号处理人员必备的数学工具。第八章线性空间与线性变换,其中线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论