2022年江苏省南通市如皋中学高三第一次调研测试数学试卷含解析_第1页
2022年江苏省南通市如皋中学高三第一次调研测试数学试卷含解析_第2页
2022年江苏省南通市如皋中学高三第一次调研测试数学试卷含解析_第3页
2022年江苏省南通市如皋中学高三第一次调研测试数学试卷含解析_第4页
2022年江苏省南通市如皋中学高三第一次调研测试数学试卷含解析_第5页
免费预览已结束,剩余16页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某几何体的三视图如图所示,图中圆的半径为1,等腰三角形的腰长为3,则该几何体表面积为()A. B. C. D.2.若函数()的图象过点,则()A.函数的值域是 B.点是的一个对称中心C.函数的最小正周期是 D.直线是的一条对称轴3.复数的()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.将函数f(x)=sin3x-cos3x+1的图象向左平移个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:①它的图象关于直线x=对称;②它的最小正周期为;③它的图象关于点(,1)对称;④它在[]上单调递增.其中所有正确结论的编号是()A.①② B.②③ C.①②④ D.②③④5.如图是国家统计局于2020年1月9日发布的2018年12月到2019年12月全国居民消费价格的涨跌幅情况折线图.(注:同比是指本期与同期作对比;环比是指本期与上期作对比.如:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比)根据该折线图,下列结论错误的是()A.2019年12月份,全国居民消费价格环比持平B.2018年12月至2019年12月全国居民消费价格环比均上涨C.2018年12月至2019年12月全国居民消费价格同比均上涨D.2018年11月的全国居民消费价格高于2017年12月的全国居民消费价格6.设,,则“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件7.已知,且,则()A. B. C. D.8.已知椭圆:的左、右焦点分别为,,过的直线与轴交于点,线段与交于点.若,则的方程为()A. B. C. D.9.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,的距离之比为,当,,不共线时,的面积的最大值是()A. B. C. D.10.如图,在底面边长为1,高为2的正四棱柱中,点是平面内一点,则三棱锥的正视图与侧视图的面积之和为()A.2 B.3 C.4 D.511.双曲线的渐近线方程为()A. B. C. D.12.若的展开式中的系数为150,则()A.20 B.15 C.10 D.25二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在处的切线与直线平行,则为________.14.已知双曲线的左、右焦点分别为为双曲线上任一点,且的最小值为,则该双曲线的离心率是__________.15.如图,在菱形ABCD中,AB=3,,E,F分别为BC,CD上的点,,若线段EF上存在一点M,使得,则____________,____________.(本题第1空2分,第2空3分)16.直线xsinα+y+2=0的倾斜角的取值范围是________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)设是椭圆上且不在轴上的一个动点,为坐标原点,过右焦点作的平行线交椭圆于、两个不同的点,求的值.18.(12分)己知点,分别是椭圆的上顶点和左焦点,若与圆相切于点,且点是线段靠近点的三等分点.求椭圆的标准方程;直线与椭圆只有一个公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于,两点,求面积的取值范围.19.(12分)已知椭圆的左焦点坐标为,,分别是椭圆的左,右顶点,是椭圆上异于,的一点,且,所在直线斜率之积为.(1)求椭圆的方程;(2)过点作两条直线,分别交椭圆于,两点(异于点).当直线,的斜率之和为定值时,直线是否恒过定点?若是,求出定点坐标;若不是,请说明理.20.(12分)我国在贵州省平塘县境内修建的500米口径球面射电望远镜(FAST)是目前世界上最大单口径射电望远镜.使用三年来,已发现132颗优质的脉冲星候选体,其中有93颗已被确认为新发现的脉冲星,脉冲星是上世纪60年代天文学的四大发现之一,脉冲星就是正在快速自转的中子星,每一颗脉冲星每两脉冲间隔时间(脉冲星的自转周期)是-定的,最小小到0.0014秒,最长的也不过11.765735秒.某-天文研究机构观测并统计了93颗已被确认为新发现的脉冲星的自转周期,绘制了如图的频率分布直方图.(1)在93颗新发现的脉冲星中,自转周期在2至10秒的大约有多少颗?(2)根据频率分布直方图,求新发现脉冲星自转周期的平均值.21.(12分)已知函数,直线为曲线的切线(为自然对数的底数).(1)求实数的值;(2)用表示中的最小值,设函数,若函数为增函数,求实数的取值范围.22.(10分)已知椭圆,左、右焦点为,点为上任意一点,若的最大值为3,最小值为1.(1)求椭圆的方程;(2)动直线过点与交于两点,在轴上是否存在定点,使成立,说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,计算得到答案.【详解】几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,故几何体的表面积为.故选:.【点睛】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.2.A【解析】

根据函数的图像过点,求出,可得,再利用余弦函数的图像与性质,得出结论.【详解】由函数()的图象过点,可得,即,,,故,对于A,由,则,故A正确;对于B,当时,,故B错误;对于C,,故C错误;对于D,当时,,故D错误;故选:A【点睛】本题主要考查了二倍角的余弦公式、三角函数的图像与性质,需熟记性质与公式,属于基础题.3.C【解析】所对应的点为(-1,-2)位于第三象限.【考点定位】本题只考查了复平面的概念,属于简单题.4.B【解析】

根据函数图象的平移变换公式求出函数的解析式,再利用正弦函数的对称性、单调区间等相关性质求解即可.【详解】因为f(x)=sin3x-cos3x+1=2sin(3x-)+1,由图象的平移变换公式知,函数g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期为,故②正确;令3x+=kπ+,得x=+(k∈Z),所以x=不是对称轴,故①错误;令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函数g(x)的图象关于点(,1)对称,故③正确;令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④错误;故选:B【点睛】本题考查图象的平移变换和正弦函数的对称性、单调性和最小正周期等性质;考查运算求解能力和整体代换思想;熟练掌握正弦函数的对称性、单调性和最小正周期等相关性质是求解本题的关键;属于中档题、常考题型5.D【解析】

先对图表数据的分析处理,再结简单的合情推理一一检验即可【详解】由折线图易知A、C正确;2019年3月份及6月份的全国居民消费价格环比是负的,所以B错误;设2018年12月份,2018年11月份,2017年12月份的全国居民消费价格分别为,由题意可知,,,则有,所以D正确.故选:D【点睛】此题考查了对图表数据的分析处理能力及进行简单的合情推理,属于中档题.6.A【解析】

根据对数的运算分别从充分性和必要性去证明即可.【详解】若,,则,可得;若,可得,无法得到,所以“”是“”的充分而不必要条件.所以本题答案为A.【点睛】本题考查充要条件的定义,判断充要条件的方法是:①若为真命题且为假命题,则命题p是命题q的充分不必要条件;②若为假命题且为真命题,则命题p是命题q的必要不充分条件;③若为真命题且为真命题,则命题p是命题q的充要条件;④若为假命题且为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.7.B【解析】分析:首先利用同角三角函数关系式,结合题中所给的角的范围,求得的值,之后借助于倍角公式,将待求的式子转化为关于的式子,代入从而求得结果.详解:根据题中的条件,可得为锐角,根据,可求得,而,故选B.点睛:该题考查的是有关同角三角函数关系式以及倍角公式的应用,在解题的过程中,需要对已知真切求余弦的方法要明确,可以应用同角三角函数关系式求解,也可以结合三角函数的定义式求解.8.D【解析】

由题可得,所以,又,所以,得,故可得椭圆的方程.【详解】由题可得,所以,又,所以,得,,所以椭圆的方程为.故选:D【点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.9.A【解析】

根据平面内两定点,间的距离为2,动点与,的距离之比为,利用直接法求得轨迹,然后利用数形结合求解.【详解】如图所示:设,,,则,化简得,当点到(轴)距离最大时,的面积最大,∴面积的最大值是.故选:A.【点睛】本题主要考查轨迹的求法和圆的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.10.A【解析】

根据几何体分析正视图和侧视图的形状,结合题干中的数据可计算出结果.【详解】由三视图的性质和定义知,三棱锥的正视图与侧视图都是底边长为高为的三角形,其面积都是,正视图与侧视图的面积之和为,故选:A.【点睛】本题考查几何体正视图和侧视图的面积和,解答的关键就是分析出正视图和侧视图的形状,考查空间想象能力与计算能力,属于基础题.11.C【解析】

根据双曲线的标准方程,即可写出渐近线方程.【详解】双曲线,双曲线的渐近线方程为,故选:C【点睛】本题主要考查了双曲线的简单几何性质,属于容易题.12.C【解析】

通过二项式展开式的通项分析得到,即得解.【详解】由已知得,故当时,,于是有,则.故选:C【点睛】本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

根据题意得出,由此可得出实数的值.【详解】,,直线的斜率为,由于函数在处的切线与直线平行,则.故答案为:.【点睛】本题考查利用函数的切线与直线平行求参数,解题时要结合两直线的位置关系得出两直线斜率之间的关系,考查计算能力,属于基础题.14.【解析】

根据双曲线方程,设及,将代入双曲线方程并化简可得,由题意的最小值为,结合平面向量数量积的坐标运算化简,即可求得的值,进而求得离心率即可.【详解】设点,,则,即,∵,,,当时,等号成立,∴,∴,∴.故答案为:.【点睛】本题考查了双曲线与向量的综合应用,由平面向量数量积的最值求离心率,属于中档题.15.【解析】

根据题意,设,则,所以,解得,所以,从而有.16.【解析】因为sinα∈[-1,1],所以-sinα∈[-1,1],所以已知直线的斜率范围为[-1,1],由倾斜角与斜率关系得倾斜角范围是.答案:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)(Ⅱ)1【解析】

(Ⅰ)由题,得,,解方程组,即可得到本题答案;(Ⅱ)设直线,则直线,联立,得,联立,得,由此即可得到本题答案.【详解】(Ⅰ)由题可得,即,,将点代入方程得,即,解得,所以椭圆的方程为:;(Ⅱ)由(Ⅰ)知,设直线,则直线,联立,整理得,所以,联立,整理得,设,则,所以,所以.【点睛】本题主要考查椭圆标准方程的求法以及直线与椭圆的综合问题,考查学生的运算求解能力.18.;.【解析】

连接,由三角形相似得,,进而得出,,写出椭圆的标准方程;由得,,因为直线与椭圆相切于点,,解得,,因为点在第二象限,所以,,所以,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,求出面积的取值范围.【详解】解:连接,由可得,,,椭圆的标准方程;由得,,因为直线与椭圆相切于点,所以,即,解得,,即点的坐标为,因为点在第二象限,所以,,所以,所以点的坐标为,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,当且仅当,即时,有最大值,所以,即面积的取值范围为.【点睛】本题考查直线和椭圆位置关系的应用,利用基本不等式,属于难题.19.(1)(2)直线过定点【解析】

(1),再由,解方程组即可;(2)设,,由,得,由直线MN的方程与椭圆方程联立得到根与系数的关系,代入计算即可.【详解】(1)由题意知:,又,且解得,,∴椭圆方程为,(2)当直线的斜率存在时,设其方程为,设,,由,得.则,(*)由,得,整理可得(*)代入得,整理可得,又,∴,即,∴直线过点当直线的斜率不存在时,设直线的方程为,,,其中,∴,由,得,所以∴当直线的斜率不存在时,直线也过定点综上所述,直线过定点.【点睛】本题考查求椭圆的标准方程以及直线与椭圆位置关系中的定点问题,在处理直线与椭圆的位置关系的大题时,一般要利用根与系数的关系来求解,本题是一道中档题.20.(1)79颗;(2)5.5秒.【解析】

(1)利用各小矩形的面积和为1可得,进而得到脉冲星自转周期在2至10秒的频率,从而得到频数;(2)平均值的估计值为各小矩形组中值与频率的乘积的和得到.【详解】(1)第一到第六组的频率依次为0.1,0.2,0.3,0.2,,0.05,其和为1所以,,所以,自转周期在2至10秒的大约有(颗).(2)新发现的脉冲星自转周期平均值为(秒).故新发现的脉冲星自转周期平均值为5.5秒.【点睛】本题考查频率分布直方图的应用,涉及到平均数的估计值等知识,是一道容易题.21.(1);(2).【解析】

试题分析:(1)先求导,然后利用导数等于求出切点的横坐标,代入两个曲线的方程,解方程组,可求得;(2)设与交点的横坐标为,利用导数求得,从而,然后利用求得的取值范围为.试题解析:(1)对求导得.设直线与曲线切于点,则,解得,所以的值为1.(2)记函数,下面考察函数的符号

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论