2023年天津铁道职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年天津铁道职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年天津铁道职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年天津铁道职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年天津铁道职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年天津铁道职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知不等式(a2+a+2)2x>(a2+a+2)x+8,其中x∈N+,使此不等式成立的x的最小整数值是______.答案:∵a2+a+2=(a+12)2+74>1,且x∈N+,∴由正整数指数函数在底数大于1时单调递增的性质,得2x>x+8,即x>8,∴使此不等式成立的x的最小整数值为9.故为:9.2.一个长方体的长、宽、高之比为2:1:3,全面积为88cm2,则它的体积为

______cm3.答案:由长方体的长、宽、高之比为2:1:3,不妨设长、宽、高分别为2x,x,3x;则长方体的全面积为:2(2x?x+2x?3x+x?3x)=2×11x2=88,∴x=±2,这里取x=2;所以,长方体的体积为:V=2x?x?3x=4×2×6=48.故为:483.整数630的正约数(包括1和630)共有______个.答案:首先将630分解质因数630=2×32×5×7;然后注意到每一因数可出现的次幂数,如2可有20,21两种情况,3有30,31,32三种情况,5有50,51两种情况,7有70,71两种情况,按分步计数原理,整数630的正约数(包括1和630)共有2×3×2×2=24个.故为:24.4.直线的参数方程为,l上的点P1对应的参数是t1,则点P1与P(a,b)之间的距离是(

A.|t1|

B.2|t1|

C.

D.答案:C5.已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是______.答案:解析:∵|PF1|+|PF2|=2a,|PQ|=|PF2|,∴|PF1|+|PF2|=|PF1|+|PQ|=2a,即|F1Q|=2a,∴动点Q到定点F1的距离等于定长2a,故动点Q的轨迹是圆.故:圆.6.一个口袋内有4个不同的红球,6个不同的白球,

(1)从中任取4个球,红球的个数不比白球少的取法有多少种?

(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?答案:解(1)由题意知本题是一个分类计数问题,将取出4个球分成三类情况取4个红球,没有白球,有C44种取3个红球1个白球,有C43C61种;取2个红球2个白球,有C42C62,∴C44+C43C61+C42C62=115种(2)设取x个红球,y个白球,则x+y=5(0≤x≤4)2x+y≥7(0≤y≤6)∴x=2y=3或x=3y=2或x=4y=1∴符合题意的取法种数有C42C63+C43C62+C44C61=186种7.设A(3,4),在x轴上有一点P(x,0),使得|PA|=5,则x等于()

A.0

B.6

C.0或6

D.0或-6答案:C8.附加题选做题B.(矩阵与变换)

设矩阵A=m00n,若矩阵A的属于特征值1的一个特征向量为10,属于特征值2的一个特征向量为01,求实数m,n的值.答案:由题意得m00n10=110,m00n01=201,…6分化简得m=10?n=00?m=0n=2所以m=1n=2.…10分9.掷一颗均匀的骰子,若随机事件A表示“出现奇数点”,则A的对立事件B表示______.答案:掷一颗均匀的骰子,结果只有2种:出现奇数点、出现偶数点.若随机事件A表示“出现奇数点”,则A的对立事件B表示:“出现偶数点”,故为出现偶数点.10.过点A(3,5)作圆C:(x-2)2+(y-3)2=1的切线,则切线的方程为______.答案:由圆的一般方程可得圆的圆心与半径分别为:(2,3);1,当切线的斜率存在,设切线的斜率为k,则切线方程为:kx-y-3k+5=0,由点到直线的距离公式可得:|2k-3-3k+5|k2+1=1解得:k=-34,所以切线方程为:3x+4y-29=0;当切线的斜率不存在时,直线为:x=3,满足圆心(2,3)到直线x=3的距离为圆的半径1,x=3也是切线方程;故为:3x+4y-29=0或x=3.11.如图是一个方形迷宫,甲、乙两人分别位于迷宫的A、B两处,两人同时以每一分钟一格的速度向东、西、南、北四个方向行走,已知甲向东、西行走的概率都为14,向南、北行走的概率为13和p,乙向东、西、南、北四个方向行走的概率均为q

(1)p和q的值;

(2)问最少几分钟,甲、乙二人相遇?并求出最短时间内可以相遇的概率.答案:(1)∵14+14+13+p=1,∴p=16,∵4q=1,∴q=14(2)t=2甲、乙两人可以相遇(如图,在C、D、E三处相遇)

设在C、D、E三处相遇的概率分别为PC、PD、PE,则:PC=(16×16)×(14×14)=1576PD=2(16×14)×2(14×14)=196PE=(14×14)×(14×14)=1256PC+PD+PE=372304即所求的概率为37230412.袋中装着标有数字1,2,3,4的小球各3个,从袋中任取3个小球,每个小球被取出的可能性都相等.

(Ⅰ)求取出的3个小球上的数字互不相同的概率;

(Ⅱ)用X表示取出的3个小球上所标的最大数字,求随机变量X的分布列和均值.答案:(I)由题意知本题是一个古典概型,试验发生包含的事件数C123,满足条件的事件是取出的3个小球上的数字互不相同,共有C43C31C31C31记“一次取出的3个小球上的数字互不相同”的事件记为A,∴P(A)=C34?C13?C13?C13C312=2755.(II)由题意X所有可能的取值为:1,2,3,4.P(X=1)=1C312=1220;P(X=2)=C23?C13+C23?C13+C33C312=19220;P(X=3)=C26?C13+C16?C23+C33C312=64220=1655;P(X=4)=C29?C13+C19?C23+C33C312=136220=3455.∴随机变量X的分布列为∴随机变量X的期望为EX=1×1220+2×19220+3×1655+4×3455=15544.13.已知复数z的模为1,且复数z的实部为13,则复数z的虚部为______.答案:设复数的虚部是b,∵复数z的模为1,且复数z的实部为13,∴(13)2+b2=1,∴b2=89,∴b=±223故为:±22314.已知集合A={x|log2x<1},B={x|0<x<c,其中c>0},若A=B,则c=______.答案:集合A={x|log2x<1}={x|0<x<2},B={x|0<x<c,其中c>0},若A=B,则c=2,故为2.15.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是()

A.a=bb=a

B.c=b

b=a

a=c

C.b=aa=b

D.a=cc=bb=a答案:B16.已知两条直线l1:y=x,l2:ax-y=0,其中a为实数,当这两条直线的夹角在(0,)内变动时,a的取值范围是(

A.(0,1)

B.

C.

D.答案:C17.如图,四边形ABCD内接于⊙O,AD:BC=1:2,AB=35,PD=40,则过点P的⊙O的切线长是()A.60B.402C.352D.50答案:作切线PE,由切割线定理知,PE2=PD•PC=PA•PB,所以PAPC=PAPB,又△PAD与△PBC有公共角P,∠PDA=∠PBC,所以△PAD∽△PBC.故PDPB=ADBC=12,即40PB=12所以PB=80,又AB=35,PE2=PA•PB=(PB-AB)•PB=(80-35)×80=602,PE=60.故选A.18.O是正六边形ABCDE的中心,且OA=a,OB=b,AB=c,在以A,B,C,D,E,O为端点的向量中:

(1)与a相等的向量有

______;

(2)与b相等的向量有

______;

(3)与c相等的向量有

______.答案:如图,在O是正六边形ABCDE的中心,以A,B,C,D,E,O为端点的向量中(1)与a相等的向量有EF,DO,CB;(2)与b相等的向量有DC,EO,FA;(3)与c相等的向量有FO,OC,ED.故三个空依次应填EF,DO,CB;DC,EO,FA;FO,OC,ED.19.如果输入2,那么执行图中算法的结果是()A.输出2B.输出3C.输出4D.程序出错,输不出任何结果答案:第一步:输入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:输出4故为C.20.已知点P是长方体ABCD-A1B1C1D1底面ABCD内一动点,其中AA1=AB=1,AD=2,若A1P与A1C所成的角为30°,那么点P在底面的轨迹为()A.圆弧B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:如图,∵A1P与A1C所成的角为30°,∴P点在以A1C为轴,母线与轴的夹角为30度的圆锥面上,在直角三角形A1CC1中,A1C1=3,CC1=1,∴∠C1AC1=30°当截面ABCD与圆锥的母线A1C1平行时,截得的图形是抛物线,故点P在底面的轨迹为抛物线的一部分.故选D.21.定义xn+1yn+1=1011xnyn,n∈N*为向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点.已知OP1=(1,0),则OP2010的坐标为______.答案:由题意,xn+1=xnyn+1=xn+yn∴向量的横坐标不变,纵坐标构成以0为首项,1为公差的等差数列∴OP2010的坐标为(1,2009)故为(1,2009)22.若函数y=f(x)的定义域是[2,4],则y=f(log12x)的定义域是()A.[12,1]B.[4,16]C.[116,14]D.[2,4]答案:∵y=f(log12x),令log12x=t,∴y=f(log12x)=f(t),∵函数y=f(x)的定义域是[2,4],∴y=f(t)的定义域也为[2,4],即2≤t≤4,∴有2≤log12x≤4,解得:116≤x≤14,∵函数的定义域即解析式中自变量的取值范围,∴y=f(log12x)的定义域为116≤x≤14,即:[116,14].故选C.23.如图所示的几何体ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥AB,M是EC的中点,

(Ⅰ)求证:DM⊥EB;

(Ⅱ)设二面角M-BD-A的平面角为β,求cosβ.答案:分别以直线AE,AB,AD为x轴、y轴、z轴,建立如图所示的空间直角坐标系A-xyz,设CB=a,则A(0,0,0),E(2a,0,0),B(0,2a,0),C(0,2a,a),D(0,0,2a)所以M(a,a,a2).(Ⅰ):DM=(a,a,-3a2)

,EB=(-2a,2a,0)DM•EB=a•(-2a)+a•2a+0=0.∴DM⊥EB,即DM⊥EB.(Ⅱ)设平面MBD的法向量为n=(x,y,z),DB=(0,2a,-2a),由n⊥DB,n⊥DM,得n•DB=2ay-2az=0n•DM=ax+ay-3a2z=0⇒y=zx+y-3z2=0取z=2得平面MBD的一非零法向量为n=(1,2,2),又平面BDA的一个法向量n1=(1,0,0).∴cos<n,n1>

=1+0+012+22+22•12+02+

02=13,即cosβ=1324.根据下面的要求,求满足1+2+3+…+n>500的最小的自然数n.

(1)画出执行该问题的程序框图;

(2)以下是解决该问题的一个程序,但有几处错误,请找出错误并予以更正.

i=1S=1n=0DO

S<=500

S=S+i

i=i+1

n=n+1WENDPRINT

n+1END.答案:(1)程序框图如左图所示.或者,如右图所示:(2)①DO应改为WHILE;

②PRINT

n+1

应改为PRINT

n;

③S=1应改为S=0.25.已知、分别是的外接圆和内切圆;证明:过上的任意一点,都可作一个三角形,使得、分别是的外接圆和内切圆.答案:略解析:证:如图,设,分别是的外接圆和内切圆半径,延长交于,则,,延长交于;则,即;过分别作的切线,在上,连,则平分,只要证,也与相切;设,则是的中点,连,则,,,所以,由于在角的平分线上,因此点是的内心,(这是由于,,而,所以,点是的内心).即弦与相切.26.根据给出的空间几何体的三视图,用斜二侧画法画出它的直观图.答案:画法:(1)画轴如下图,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.(2)画圆台的两底面画出底面⊙O假设交x轴于A、B两点,在z轴上截取O′,使OO′等于三视图中相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′利用O′x′与O′y′画出底面⊙O′,设⊙O′交x′轴于A′、B′两点.(3)成图连接A′A、B′B,去掉辅助线,将被遮挡的部分要改为虚线,即得到给出三视图所表示的直观图.27.已知△ABC是边长为4的正三角形,D、P是△ABC内部两点,且满足AD=14(AB+AC),AP=AD+18BC,则△APD的面积为______.答案:取BC的中点E,连接AE,根据△ABC是边长为4的正三角形∴AE⊥BC,AE=12(AB+AC)而AD=14(AB+AC),则点D为AE的中点,AD=3取AF=18BC,以AD,AF为边作平行四边形,可知AP=AD+18BC=AD+AF而△APD为直角三角形,AF=12∴△APD的面积为12×12×3=34故为:3428.若向量的起点与终点M、A、B、C互不重合且无三点共线,且满足下列关系(O为空间任一点),则能使向量成为空间一组基底的关系是()

A.

B.

C.

D.答案:C29.种植两株不同的花卉,它们的存活率分别为p和q,则恰有一株存活的概率为(

)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率为p(1-q)+(1-p)q=p+q-2pq。30.若a>0,b>0,2a+3b=1,则ab的最大值为______.答案:∵a>0,b>0,2a+3b=1∴2a+3b=1≥26ab∴ab≤124故为12431.在5件产品中,有3件一等品,2件二等品.从中任取2件.那么以710为概率的事件是()A.都不是一等品B.至少有一件二等品C.恰有一件一等品D.至少有一件一等品答案:5件产品中,有3件一等品和2件二等品,从中任取2件,从5件产品中任取2件,共有C52=10种结果,∵“任取的2件产品都不是一等品”只有1种情况,其概率是110;“任取的2件产品中至少有一件二等品”有C31C21+1种情况,其概率是710;“任取的2件产品中恰有一件一等品”有C31C21种情况,其概率是610;“任取的2件产品在至少有一件一等品”有C31C21+C32种情况,其概率是910;∴以710为概率的事件是“至少有一件二等品”.故为B.32.(1+x2)5的展开式中x2的系数()A.10B.5C.52D.1答案:含x2项为C25(x2)2=10×x24=52x2,故选项为为C.33.下列四个函数中,与y=x表示同一函数的是()A.y=(x)2B.y=3x3C.y=x2D.y=x2x答案:选项A中的函数的定义域与已知函数不同,故排除选项A.选项B中的函数与已知函数具有相同的定义域、值域和对应关系,故是同一个函数,故选项B满足条件.选项C中的函数与已知函数的值域不同,故不是同一个函数,故排除选项C.选项D中的函数与与已知函数的定义域不同,故不是同一个函数,故排除选项D,故选B.34.(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1与C2的参数方程分别为x=ty=t(t为参数)和x=2cosθy=2sinθ(θ为参数),则曲线C1与C2的交点坐标为______.答案:在平面直角坐标系xOy中,曲线C1与C2的普通方程分别为y2=x,x2+y2=2.解方程组y2=xx2

+y2=2

可得x=1y=1,故曲线C1与C2的交点坐标为(1,1),故为(1,1).35.正态曲线下、横轴上,从均值到+∞的面积为______答案:由正态曲线的对称性特点知,曲线与x轴之间的面积为1,所以从均数到的面积为整个面积的一半,即50%.填:0.5.36.已知,,那么P(B|A)等于()

A.

B.

C.

D.答案:B37.在平行六面体ABCD-A′B′C′D′中,向量是()

A.有相同起点的向量

B.等长的向量

C.共面向量

D.不共面向量答案:C38.在500个人身上试验某种血清预防感冒的作用,把一年中的记录与另外500个未用血清的人作比较,结果如下:

未感冒

感冒

合计

试验过

252

248

500

未用过

224

276

500

合计

476

524

1000

根据上表数据,算得Χ2=3.14.以下推断正确的是()

A.血清试验与否和预防感冒有关

B.血清试验与否和预防感冒无关

C.通过是否进行血清试验可以预测是否得感冒

D.通过是否得感冒可以推断是否进行了血清试验答案:A39.(x3+1xx)10的展开式中的第四项是______.答案:由二项式定理的通项公式可知(x3+1xx)10的展开式中的第四项是:C310(x3)7(1xx)3=120x16?x.故为:120x16?x.40.求证:答案:证明见解析解析:证:∴41.(选做题)那霉素发酵液生物测定,一般都规定培养温度为(37±1)°C,培养时间在16小时以上,某制药厂为了缩短时间,决定优选培养温度,试验范围固定在29~50°C,精确度要求±1°C,用分数法安排实验,令第一试点在t1处,第二试点在t2处,则t1+t2=(

).答案:7942.已知a=(a1,a2),b=(b1,b2),丨a丨=5,丨b丨=6,a•b=30,则a1+a2b1+b2=______.答案:因为丨a丨=5,丨b丨=6,a•b=30,又a⋅b=|a|⋅|b|cos<a,b>=30,即cos<a,b>=1,所以a,b同向共线.设b=ka,(k>0).则b1=ka1,b2=ka2,所以|b|=k|a|,所以k=65,所以a1+a2b1+b2=a1+a2k(a1+a2)=1k=56.故为:56.43.设α和β为不重合的两个平面,给出下列命题:

(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;

(2)若α外一条直线l与α内的一条直线平行,则l和α平行;

(3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;

(4)直线l与α垂直的充分必要条件是l与α内的两条直线垂直.

上面命题,真命题的序号是______(写出所有真命题的序号)答案:由面面平行的判定定理可知,(1)正确.由线面平行的判定定理可知,(2)正确.对于(3)来说,α内直线只垂直于α和β的交线l,得不到其是β的垂线,故也得不出α⊥β.对于(4)来说,l只有和α内的两条相交直线垂直,才能得到l⊥α.也就是说当l垂直于α内的两条平行直线的话,l不一定垂直于α.44.如图所示,已知点P在正方体ABCD—A′B′C′D′的对角线

BD′上,∠PDA=60°.

(1)求DP与CC′所成角的大小;

(2)求DP与平面AA′D′D所成角的大小.答案:(1)DP与CC′所成的角为45°(2)DP与平面AA′D′D所成的角为30°解析:如图所示,以D为原点,DA为单位长度建立空间直角坐标系D—xyz.则=(1,0,0),=(0,0,1).连接BD,B′D′.在平面BB′D′D中,延长DP交B′D′于H.设="(m,m,1)"(m>0),由已知〈,〉=60°,由·=||||cos〈,〉,可得2m=.解得m=,所以=(,,1).(1)因为cos〈,〉==,所以〈,〉=45°,即DP与CC′所成的角为45°.(2)平面AA′D′D的一个法向量是=(0,1,0).因为cos〈,〉==,所以〈,〉=60°,可得DP与平面AA′D′D所成的角为30°.45.已知圆C:x2+y2-4x-5=0.

(1)过点(5,1)作圆C的切线,求切线的方程;

(2)若圆C的弦AB的中点P(3,1),求AB所在直线方程.答案:由C:x2+y2-4x-5=0得圆的标准方程为(x-2)2+y2=9-----------(2分)(1)显然x=5为圆的切线.------------------------(4分)另一方面,设过(5,1)的圆的切线方程为y-1=k(x-5),即kx-y+1-5k=0;所以d=|2k-5k+1|k2+1=3,解得k=-43于是切线方程为4x+3y-23=0和x=5.------------------------(7分)(2)设所求直线与圆交于A,B两点,其坐标分别为(x1,y1)B(x2,y2)则有(x1-2)2+y21=9(x2-2)2+y22=9两式作差得(x1+x2-4)(x2-x1)+(y2+y1)(y2-y1)=0--------------(10分)因为圆C的弦AB的中点P(3,1),所以(x2+x1)=6,(y2+y1)=2

所以y2-y1x2-x1=-1,故所求直线方程为

x+y-4=0-----------------(14分)46.O、B、C为空间四个点,又、、为空间的一个基底,则()

A.O、A、B、C四点不共线

B.O、A、B、C四点共面,但不共线

C.O、A、B、C四点中任意三点不共线

D.O、A、B、C四点不共面答案:D47.P在⊙O外,PC切⊙O于C,PAB交⊙O于A、B,则()

A.∠PCB=∠B

B.∠PAC=∠P

C.∠PCA=∠B

D.∠PAC=∠BCA答案:C48.对于函数f(x),在使f(x)≤M成立的所有常数M中,我们把M的最小值称为函数f(x)的“上确界”则函数f(x)=(x+1)2x2+1的上确界为()A.14B.12C.2D.4答案:因为f(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因为x2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常数M中,M的最小值为2.故选C.49.如图所示,图中线条构成的所有矩形中(由6个小的正方形组成),其中为正方形的概率为

______.答案:它的长有10种取法,由长与宽的对称性,得到它的宽也有10种取法;因为,长与宽相互独立,所以得到长X宽的个数有:10X10=100个即总的矩形的个数有:100个长=宽的个数为:(1X1的正方形的个数)+(2X2的正方形个数)+(3X3的正方形个数)+(4X4的正方形个数)=16+9+4+1=30个即正方形的个数有:30个所以为正方形的概率是30100=0.3故为0.350.如图,长方体ABCD-A1B1C1D1中,M为DD1的中点,N在AC上,且AN:NC=2:1.求证:与共面.答案:证明:与共面.第2卷一.综合题(共50题)1.把一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则点(a,b)在直线x+y=5左下方的概率为()A.16B.56C.112D.1112答案:由题意知本题是一个古典概型,试验发生包含的事件数是6×6=36种结果,满足条件的事件是点(a,b)在直线x+y=5左下方即a+b<5,可以列举出所有满足的情况(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6种结果,∴点在直线的下方的概率是636=16故选A.2.抛掷两个骰子,若至少有一个1点或一个6点出现,就说这次试验失败.那么,在3次试验中成功2次的概率为()

A.

B.

C.

D.答案:D3.参数方程(θ为参数)表示的曲线为()

A.圆的一部分

B.椭圆的一部分

C.双曲线的一部分

D.抛物线的一部分答案:D4.在线性回归模型y=bx+a+e中,下列说法正确的是()A.y=bx+a+e是一次函数B.因变量y是由自变量x唯一确定的C.随机误差e是由于计算不准确造成的,可以通过精确计算避免随机误差e的产生D.因变量y除了受自变量x的影响外,可能还受到其它因素的影响,这些因素会导致随机误差e的产生答案:线性回归是利用数理统计中的回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法之一,分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析.A不正确,根据线性回归方程做出的y的值是一个预报值,不是由x唯一确定,故B不正确,随机误差不是由于计算不准造成的,故C不正确,y除了受自变量x的影响之外还受其他因素的影响,故D正确,故选D.5.设x>0,y>0且x≠y,求证答案:证明略解析:由x>0,y>0且x≠y,要证明只需

即只需由条件,显然成立.∴原不等式成立6.抛物线y=x2的焦点坐标是()

A.(,0)

B.(0,)

C.(0,1)

D.(1,0)答案:C7.由9个正数组成的矩阵

中,每行中的三个数成等差数列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比数列,给出下列判断:①第2列a12,a22,a32必成等比数列;②第1列a11,a21,a31不一定成等比数列;③a12+a32≥a21+a23;④若9个数之和等于9,则a22≥1.其中正确的个数有()

A.1个

B.2个

C.3个

D.4个答案:B8.设α和β为不重合的两个平面,给出下列命题:

(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;

(2)若α外一条直线l与α内的一条直线平行,则l和α平行;

(3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;

(4)直线l与α垂直的充分必要条件是l与α内的两条直线垂直.

上面命题,真命题的序号是______(写出所有真命题的序号)答案:由面面平行的判定定理可知,(1)正确.由线面平行的判定定理可知,(2)正确.对于(3)来说,α内直线只垂直于α和β的交线l,得不到其是β的垂线,故也得不出α⊥β.对于(4)来说,l只有和α内的两条相交直线垂直,才能得到l⊥α.也就是说当l垂直于α内的两条平行直线的话,l不一定垂直于α.9.某公司招聘员工,经过笔试确定面试对象人数,面试对象人数按拟录用人数分段计算,计算公式为y=4x1≤x≤102x+1010<x≤1001.5xx>100其中x代表拟录用人数,y代表面试对象人数.若应聘的面试对象人数为60人,则该公司拟录用人数为()A.15B.40C.25D.130答案:由题意知:当10<x≤100时,y=2x+10∈(30,210],又因为60∈(30,210],∴2x+10=60,∴x=25.故:该公司拟录用人数为25人.故选C.10.不等式3≤|5-2x|<9的解集为()

A.[-2,1)∪[4,7)

B.(-2,1]∪(4,7]

C.(-2,-1]∪[4,7)

D.(-2,1]∪[4,7)答案:D11.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3C.4D.8答案:A={1,2},A∪B={1,2,3},则集合B中必含有元素3,即此题可转化为求集合A={1,2}的子集个数问题,所以满足题目条件的集合B共有22=4个.故选择C.12.方程cos2x=x的实根的个数为

______个.答案:cos2x=x的实根即函数y=cos2x与y=x的图象交点的横坐标,故可以将求根个数的问题转化为求两个函数图象的交点个数.如图在同一坐标系中作出y=cos2x与y=x的图象,由图象可以看出两图象只有一个交点,故方程的实根只有一个.故应该填

1.13.已知A(3,-2),B(-5,4),则以AB为直径的圆的方程是()A.(x-1)2+(y+1)2=25B.(x+1)2+(y-1)2=25C.(x-1)2+(y+1)2=100D.(x+1)2+(y-1)2=100答案:∵A(3,-2),B(-5,4),∴以AB为直径的圆的圆心为(-1,1),半径r=(-1-3)2+(1+2)2=5,∴圆的方程为(x+1)2+(y-1)2=25故选B.14.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()

A.若k2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病

B.从独立性检验可知,有99%的把握认为吸烟与患肺病有关时,我们说某人吸烟,那么他有99%的可能患有肺病

C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误

D.以上三种说法都不正确答案:D15.设曲线C的方程是,将C沿x轴,y轴正向分别平移单位长度后,得到曲线C1.(1)写出曲线C1的方程;(2)证明曲线C与C1关于点A(,)对称.答案:(1)(2)证明略解析:(1)由已知得,,则平移公式是即代入方程得曲线C1的方程是(2)在曲线C上任取一点,设是关于点A的对称点,则有,,代入曲线C的方程,得关于的方程,即可知点在曲线C1上.反过来,同样可以证明,在曲线C1上的点关于点A的对称点在曲线C上,因此,曲线C与C1关于点A对称.16.已知双曲线的两个焦点为F1(-,0),F2(,0),P是此双曲线上的一点,且PF1⊥PF2,|PF1|•|PF2|=2,则该双曲线的方程是()

A.

B.

C.

D.答案:C17.设a>2,给定数列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求证:

(1)xn>2,且xn+1xn<1(n=1,2…);

(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:证明:(1)①当n=1时,∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12

-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.结论成立.②假设n=k时,结论成立,即2<xk+1<xk(k∈N+),则xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,综上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由条件x1=a≤3知不等式当n=1时成立假设不等式当n=k(k≥1)时成立当n=k+1时,由条件及xk>2知xk+1≤1+12k⇔x2k≤2(xk-1)(2+12k)⇔x2k-2(2+12k)xk+2(2+12k)≤0⇔(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及归纳假设知,上面最后一个不等式一定成立,所以不等式xk+1≤2+12k也成立,从而不等式xn≤2+12n-1对所有的正整数n成立18.已知圆M的方程为:(x+3)2+y2=100及定点N(3,0),动点P在圆M上运动,线段PN的垂直平分线交圆M的半径MP于Q点,设点Q的轨迹为曲线C,则曲线C的方程是______.答案:连接QN,如图由已知,得|QN|=|QP|,所以|QM|+|QN|=|QM|+|QN|=|MP|=10又|MN|=6,10>6,根据椭圆的定义,点Q的轨迹是M,N为焦点,以10为长轴长的椭圆,所以2a=10,2c=6,所以b=4,所以,点Q的轨迹方程为:x225+y216=1故为:x225+y216=119.已知点G是△ABC的重心,O是空间任一点,若OA+OB+OC=λOG,则实数λ=______.答案:由于G是三角形ABC的重心,则有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故为:320.若有以下说法:

①相等向量的模相等;

②若a和b都是单位向量,则a=b;

③对于任意的a和b,|a+b|≤|a|+|b|恒成立;

④若a∥b,c∥b,则a∥c.

其中正确的说法序号是()A.①③B.①④C.②③D.③④答案:根据定义,大小相等且方向相同的两个向量相等.因此相等向量的模相等,故①正确;因为单位向量的模等于1,而方向不确定.所以若a和b都是单位向量,则不一定有a=b成立,故②不正确;根据向量加法的三角形法则,可得对于任意的a和b,都有|a+b|≤|a|+|b|成立,当且仅当a和b方向相同时等号成立,故③正确;若b=0,则有a∥b且c∥b,但是a∥c不成立,故④不正确.综上所述,正确的命题是①③故选:A21.已知a,b,c∈R,a+2b+3c=6,则a2+4b2+9c2的最小值为______.答案:∵a+2b+3c=6,∴根据柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+(2b)2+(3c)2]化简得62≤3(a2+4b2+9c2),即36≤3(a2+4b2+9c2)∴a2+4b2+9c2≥12,当且仅当a:2b:3c=1:1:1时,即a=2,b=1,c=23时等号成立由此可得:当且仅当a=2,b=1,c=23时,a2+4b2+9c2的最小值为12故为:1222.对变量x、y有观测数据(xi,yi)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()

A.变量x与y正相关,u与v正相关

B.变量x与y正相关,u与v负相关

C.变量x与y负相关,u与v正相关

D.变量x与y负相关,u与v负相关答案:C23.一个长方体的长、宽、高之比为2:1:3,全面积为88cm2,则它的体积为

______cm3.答案:由长方体的长、宽、高之比为2:1:3,不妨设长、宽、高分别为2x,x,3x;则长方体的全面积为:2(2x?x+2x?3x+x?3x)=2×11x2=88,∴x=±2,这里取x=2;所以,长方体的体积为:V=2x?x?3x=4×2×6=48.故为:4824.已知四边形ABCD中,AB=12DC,且|AD|=|BC|,则四边形ABCD的形状是______.答案:∵AB=12DC,∴AB∥DC,且|AB|=12|DC|,即线段AB平行于线段CD,且线段AB长度是线段CD长度的一半∴四边形ABCD为以AB为上底、CD为下底的梯形,又∵|AD|=|BC|,∴梯形ABCD的两腰相等,因此四边形ABCD是等腰梯形.故为:等腰梯形25.如图,平面内有三个向量OA、OB、OC,其中与OA与OB的夹角为120°,OA与OC的夹角为30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),则λ+μ的值为______.答案:过C作OA与OB的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四边形的边长为2和4,λ+μ=2+4=6.故为6.26.方程x2+(m-2)x+5-m=0的两根都大于2,则m的取值范围是()

A.(-5,-4]

B.(-∞,-4]

C.(-∞,-2]

D.(-∞,-5)∪(-5,-4]答案:A27.若a=()x,b=x3,c=logx,则当x>1时,a,b,c的大小关系式()

A.a<b<c

B.c<b<a

C.c<a<b

D.a<c<b答案:C28.下列函数图象中,正确的是()

A.

B.

C.

D.

答案:C29.若函数f(x)=x+1的值域为(2,3],则函数f(x)的定义域为______.答案:∵f(x)=x+1的值域为(2,3],∴2<x+1≤3∴1<x≤2故为:(1,2]30.已知向量a=(2,4),b=(1,1),若向量b⊥(a+λb),则实数λ的值是

______.答案:a+λb=(2,4)+λ(1,1)=(2+λ,4+λ).∵b⊥(a+λb),∴b•(a+λb)=0,即(1,1)•(2+λ,4+λ)=2+λ+4+λ=6+2λ=0,∴λ=-3.故:-331.下面的结构图,总经理的直接下属是()

A.总工程师和专家办公室

B.开发部

C.总工程师、专家办公室和开发部

D.总工程师、专家办公室和所有七个部答案:C32.椭圆上有一点P,F1,F2是椭圆的左、右焦点,△F1PF2为直角三角形,则这样的点P有()

A.3个

B.4个

C.6个

D.8个答案:C33.某几何体的三视图如图所示,则这个几何体的体积是______.答案:由三视图可知该几何体为是一平放的直三棱柱,底面是边长为2的正三角形,棱柱的侧棱为3,也为高.V=Sh=34×22

×3=33故为:33.34.如图过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则抛物线的方程为()

A.y2=x

B.y2=9x

C.y2=x

D.y2=3x

答案:D35.△ABC是边长为1的正三角形,那么△ABC的斜二测平面直观图△A′B′C′的面积为(

A.

B.

C.

D.答案:D36.从椭圆

x2a2+y2b2=1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且AB∥OP,|F1A|=10+5,求椭圆的方程.答案:∵AB∥OP∴PF1F1O=BOOA?PF1=bca又∵PF1⊥x轴∴c2a2+y2b2=1?y=b2a∴b=c由a+c=10+5b=ca2=b2+c2解得:a=10b=5c=5∴椭圆方程为x210+y25=1.37.已知焦点在x轴上的双曲线渐近线方程是y=±4x,则该双曲线的离心率是()

A.

B.

C.

D.答案:A38.电子手表厂生产某批电子手表正品率为,次品率为,现对该批电子手表进行测试,设第X次首次测到正品,则P(1≤X≤2013)等于()

A.1-()2012

B.1-()2013

C.1-()2012

D.1-()2013答案:B39.某市为研究市区居民的月收入调查了10000人,并根据所得数据绘制了样本的频率分布直方图(如图).

(Ⅰ)求月收入在[3000,3500)内的被调查人数;

(Ⅱ)估计被调查者月收入的平均数(同一组中的数据用该组区间的中点值作代表).

答案:(I)10000×0.0003×500=1500(人)∴月收入在[3000,3500)内的被调查人数1500人(II).x=1250×0.1+1750×0.2+2250×0.25+2750×0.25+3250×0.15+3750×0.05=2400∴估计被调查者月收入的平均数为240040.(理)

设O为坐标原点,向量OA=(1,2,3),OB=(2,1,2),OP=(1,1,2),点Q在直线OP上运动,则当QA•QB取得最小值时,点Q的坐标为______.答案:∵OP=(1,1,2),点Q在直线OP上运动,设OQ=λOP=(λ,λ,2λ)又∵向量OA=(1,2,3),OB=(2,1,2),∴QA=(1-λ,2-λ,3-2λ),QB=(2-λ,1-λ,2-2λ)则QA•QB=(1-λ)×(2-λ)+(2-λ)×(1-λ)+(3-2λ)×(2-2λ)=6λ2-16λ+10易得当λ=43时,QA•QB取得最小值.此时Q的坐标为(43,43,83)故为:(43,43,83)41.已知三角形ABC的一个顶点A(2,3),AB边上的高所在的直线方程为x-2y+3=0,角B的平分线所在的直线方程为x+y-4=0,求此三角形三边所在的直线方程.答案:由题意可得AB边的斜率为-2,由点斜式求得AB边所在的直线方程为y-3=-2(x-2),即2x+y-7=0.由2x+y-7=0x+y-4=0

求得x=3y=1,故点B的坐标为(3,1).设点A关于角B的平分线所在的直线方程为x+y-4=0的对称点为M(a,b),则M在BC边所在的直线上.则由b-3a-2=-1a+22+b+32-4=0

求得a=1b=2,故点M(1,2),由两点式求得BC的方程为y-12-1=x-31-3,即x+2y-5=0.再由x-2y+3=0x+2y-5=0求得点C的坐标为(2,52),由此可得得AC的方程为x=2.42.设复数z=x+yi(x,y∈R)与复平面上点P(x,y)对应.

(1)设复数z满足条件|z+3|+(-1)n|z-3|=3a+(-1)na(其中n∈N*,常数a∈

(32

3)),当n为奇数时,动点P(x,y)的轨迹为C1;当n为偶数时,动点P(x,y)的轨迹为C2,且两条曲线都经过点D(2,2),求轨迹C1与C2的方程;

(2)在(1)的条件下,轨迹C2上存在点A,使点A与点B(x0,0)(x0>0)的最小距离不小于233,求实数x0的取值范围.答案:(1)方法1:①当n为奇数时,|z+3|-|z-3|=2a,常数a∈

(32

3),轨迹C1为双曲线,其方程为x2a2-y29-a2=1;…(3分)②当n为偶数时,|z+3|+|z-3|=4a,常数a∈

(32

3),轨迹C2为椭圆,其方程为x24a2+y24a2-9=1;…(6分)依题意得方程组44a2+24a2-9=14a2-29-a2=1⇒4a4-45a2+99=0a4-15a2+36=0

,解得a2=3,因为32<a<3,所以a=3,此时轨迹为C1与C2的方程分别是:x23-y26=1(x>0),x212+y23=1.…(9分)方法2:依题意得|z+3|+|z-3|=4a|z+3|-|z-3|=2a⇒|z+3|=3a|z-3|=a…(3分)轨迹为C1与C2都经过点D(2,2),且点D(2,2)对应的复数z=2+2i,代入上式得a=3,…(6分)即|z+3|-|z-3|=23对应的轨迹C1是双曲线,方程为x23-y26=1(x>0);|z+3|+|z-3|=43对应的轨迹C2是椭圆,方程为x212+y23=1.…(9分)(2)由(1)知,轨迹C2:x212+y23=1,设点A的坐标为(x,y),则|AB|2=(x-x0)2+y2=(x-x0)2+3-14x2=34x2-2x0x+x20+3=34(x-43x0)2+3-13x20,x∈[-23,23]…(12分)当0<43x0≤23即0<x0≤332时,|AB|2min=3-13x20≥43⇒0<x0≤5当43x0>23即x0>332时,|AB|min=|x0-23|≥233⇒x0≥833,…(16分)综上,0<x0≤5或x0≥833.…(18分)43.已知随机变量ξ的数学期望Eξ=0.05且η=5ξ+1,则Eη等于()

A.1.15

B.1.25

C.0.75

D.2.5答案:B44.圆心在x轴上,且过两点A(1,4),B(3,2)的圆的方程为______.答案:设圆心坐标为(m,0),半径为r,则圆的方程为(x-m)2+y2=r2,∵圆经过两点A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圆的方程为(x+1)2+y2=20故为:(x+1)2+y2=2045.已知x+5y+3z=1,则x2+y2+z2的最小值为______.答案:证明:35(x2+y2+z2)×(1+25+9)≥(x+5y+3z)2=1∴x2+y2+z2≥135,则x2+y2+z2的最小值为135,故为:135.46.=(2,1),=(3,4),则向量在向量方向上的投影为()

A.

B.

C.2

D.10答案:C47.平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为为v2=(-2,-4,10),则平面α与平面β()A.平行B.垂直C.相交D.不确定答案:∵平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为v2=(-2,-4,10),∵v1•v2=1×(-2)+2×(-4)+1×10=0∴v1⊥v2,∴平面α⊥平面β故选B48.某计算机程序每运行一次都随机出现一个五位的二进制数A=

,其中A的各位数中,a1=1,ak(k=2,3,4,5)出现0的概率为,出现1的概率为.记ξ=a1+a2+a3+a4+a5,当程序运行一次时,ξ的数学期望Eξ=()

A.

B.

C.

D.答案:C49.设,,,则P,Q,R的大小顺序是(

)

A.P>Q>R

B.P>R>Q

C.Q>P>R

D.Q>R>P答案:B50.隋机变量X~B(6,),则P(X=3)=()

A.

B.

C.

D.答案:C第3卷一.综合题(共50题)1.是平面直角坐标系(坐标原点为O)内分别与x轴、y轴正方向相同的两个单位向量,且则△OAB的面积等于()

A.15

B.10

C.7.5

D.5答案:D2.一个箱中原来装有大小相同的

5

个球,其中

3

个红球,2

个白球.规定:进行一次操

作是指“从箱中随机取出一个球,如果取出的是红球,则把它放回箱中;如果取出的是白

球,则该球不放回,并另补一个红球放到箱中.”

(1)求进行第二次操作后,箱中红球个数为

4

的概率;

(2)求进行第二次操作后,箱中红球个数的分布列和数学期望.答案:(1)设A1表示事件“第一次操作从箱中取出的是红球”,B1表示事件“第一次操作从箱中取出的是白球”,A2表示事件“第二次操作从箱中取出的是红球”,B2表示事件“第二次操作从箱中取出的是白球”.则A1B2表示事件“第一次操作从箱中取出的是红球,第二次操作从箱中取出的是白球”.由条件概率计算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作从箱中取出的是白球,第二次操作从箱中取出的是红球”.由条件概率计算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“进行第二次操作后,箱中红球个数为

4”,又A1B2与B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)设进行第二次操作后,箱中红球个数为X,则X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.进行第二次操作后,箱中红球个数X的分布列为:进行第二次操作后,箱中红球个数X的数学期望EX=3×925+4×1425+5×225=9325.3.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5}B.{3,6}C.{3,7}D.{3,9}答案:因为A∩B={1,3,5,7,9}∩{0,3,6,9,12}={3,9}故选D4.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面()A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案:∵A(9,-3,4),B(9,2,1),∴AB=(9,2,1)-(9,-3,4)=(0,5,-3),∵yOz平面内的向量的一般形式为a=(0,y,z)∴向量AB∥a,可得AB∥平面yOz.故选:C5.

已知向量a,b的夹角为,且|a|=2,|b|=1,则向量a与向量2+2b的夹角等于()

A.

B.

C.

D.答案:D6.下图是由哪个平面图形旋转得到的(

)答案:A7.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的14,且样本容量是160,则中间一组的频数为()A.32B.0.2C.40D.0.25答案:设间一个长方形的面积S则其他十个小长方形面积的和为4S,所以频率分布直方图的总面积为5S所以中间一组的频率为S5S=0.2所以中间一组的频数为160×0.2=32故选A8.在z轴上与点A(-4,1,7)和点B(3,5,-2)等距离的点C的坐标为

______.答案:由题意设C(0,0,z),∵C与点A(-4,1,7)和点B(3,5,-2)等距离,∴|AC|=|BC|,∴16+1+(7-z)2=9+25+(z+2)2,∴18z=28,∴z=149,∴C点的坐标是(0,0,149)故为:(0,0,149)9.设a,b,c都是正数,求证:bca+cab+abc≥a+b+c.答案:证明:∵2(bca+acb+abc)=(bca+acb)+(bca+abc)+(acb+abc)≥2abc2ab+2acb2ac+2bca2bc=2c+2b+2a,∴bca+acb+abc≥a+b+c当且仅当a=b=c时,等号成立.10.平行线3x-4y-8=0与6x-8y+3=0的距离为______.答案:6x-8y+3=0可化为3x-4y+32=0,故所求距离为|-8-32|32+(-4)2=1910,故为:191011.已知按向量平移得到,则

.答案:3解析:由平移公式可得解得.12.已知非零向量,若与互相垂直,则=(

A.

B.4

C.

D.2答案:D13.设随机事件A、B,P(A)=35,P(B|A)=12,则P(AB)=______.答案:由条件概率的计算公式,可得P(AB)=P(A)×P(B|A)=35×12=310;故为310.14.集合{x∈N*|

12

x

∈Z}中含有的元素个数为()

A.4

B.6

C.8

D.12答案:B15.已知点A分BC所成的比为-13,则点B分AC所成的比为______.答案:由已知得B是AC的内分点,且2|AB|=|BC|,故B分AC

的比为ABBC=|AB||BC|=12,故为12.16.对于函数y=f(x),在给定区间上有两个数x1,x2,且x1<x2,使f(x1)<f(x2)成立,则y=f(x)()A.一定是增函数B.一定是减函数C.可能是常数函数D.单调性不能确定答案:解析:由单调性定义可知,不能用特殊值代替一般值.故选D.17.某几何体的三视图如图所示,则这个几何体的体积是______.答案:由三视图可知该几何体为是一平放的直三棱柱,底面是边长为2的正三角形,棱柱的侧棱为3,也为高.V=Sh=34×22

×3=33故为:33.18.已知复数z=2+i,则z2对应的点在第()象限.A.ⅠB.ⅡC.ⅢD.Ⅳ答案:由z=2+i,则z2=(2+i)2=22+4i+i2=3+4i.所以,复数z2的实部等于3,虚部等于4.所以z2对应的点在第Ⅰ象限.故选A.19.等边三角形ABC中,P在线段AB上,且AP=λAB,若CP•AB=PA•PB,则实数λ的值是______.答案:设等边三角形ABC的边长为1.则|AP|=λ|AB|=λ,|PB|=1-λ.(0<λ<1)CP•AB=(CA+AP)•AB=CA•AB+

AP•AB=PA•PB,所以1×1×cos120°+λ×1×cos0°=λ×(1-λ)cos180°.化简-12+λ=-λ(1-λ),整理λ2-2λ+12=0,解得λ=2-22(λ=2+22>1舍去)故为:2-2220.已知O、A、M、B为平面上四点,且,则()

A.点M在线段AB上

B.点B在线段AM上

C.点A在线段BM上

D.O、A、M、B四点一定共线答案:B21.在平面直角坐标系xOy中,已知圆C:x=5cosθ-1y=5sinθ+2(θ为参数)和直线l:x=4t+6y=-3t-2(t为参数),则直线l与圆C相交所得的弦长等于______.答案:∵在平面直角坐标系xOy中,已知圆C:x=5cosθ-1y=5sinθ+2(θ为参数),∴(x+1)2+(y-2)2=25,∴圆心为(-1,2),半径为5,∵直线l:x=4t+6y=-3t-2(t为参数),∴3x+4y-10=0,∴圆心到直线l的距离d=|-3+8-10|5=1,∴直线l与圆C相交所得的弦长=2×52-1=46.故为46.22.如图所示的方格纸中有定点O,P,Q,E,F,G,H,则=()

A.

B.

C.

D.

答案:C23.正十边形的一个内角是多少度?答案:由多边形内角和公式180°(n-2),∴每一个内角的度数是180°(n-2)n当n=10时.得到一个内角为180°(10-2)10=144°24.设m∈R,向量=(1,m).若||=2,则m等于()

A.1

B.

C.±1

D.±答案:D25.已知集合A={2,x,y},B={2x,y2,2}且x,y≠0,若A=B,则实数x+y的值______.答案:因为集合A={2,x,y},B={2x,y2,2}且x,y≠0,所以x=y2y=2x,解得x=14y=12,所以x+y=34.故为:34.26.已知a=(3λ,6,λ+6),b=(λ+1,3,2λ)为两平行平面的法向量,则λ=______.答案:∵a=(3λ,6,λ+6),b=(λ+1,3,2λ)为两平行平面的法向量,∴a∥b.∴存在实数k,使得a=kb,∴3λ=k(λ+1)6=3kλ+6=2λk,解得k=2λ=2,故为227.过点(-3,-1),且与直线x-2y=0平行的直线方程为______.答案:直线l经过点(-3,-1),且与直线x-2y=0平行,直线的斜率为12所以直线l的方程为:y+1=12(x+3)即x-2y+1=0.故为:x-2y+1=0.28.设a,b,λ都为正数,且a≠b,对于函数y=x2(x>0)图象上两点A(a,a2),B(b,b2).

(1)若AC=λCB,则点C的坐标是______;

(2)过点C作x轴的垂线,交函数y=x2(x>0)的图象于D点,由点C在点D的上方可得不等式:______.答案:(1)设点C(x,y),因为点A(a,a2),B(b,b2),AC=λCB,则(x-a,y-a2)=λ(b-x,b2-y),所以:x=a+λb1+λ,y=a2+λb21+λ(2)因为点C在点D的上方,则y>yD,所以a2+λb21+λ>(a+λb1+λ)229.将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD中点,则∠AED的大小为()

A.45°

B.30°

C.60°

D.90°答案:D30.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)

A.(不等式选做题)不等式|x-5|+|x+3|≥10的解集是______.

B.(坐标系与参数方程选做题)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是______.

C.(几何证明选做题)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=22,BE=1,BF=2,若CE与圆相切,则线段CE的长为______.答案:A.∵|x-5|+|x+3|≥10,∴当x≥5时,x-5+x+3≥10,∴x≥6;当x≤-3时,有5-x+(-x-3)≥10,∴x≤-4;当-4<x<5时,有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴该圆的圆心的直角坐标为(-1,0),∴其极坐标是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依题意,由相交线定理得:AF•FB=DF•FC,∴AF×2=22×22,∴AF=4;又∵CE与圆相切,∴|CE|2=|EB|•|EA|=1×(1+2+4)=7,∴|CE|=7.故为:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.31.以椭圆x23+y2=1的右焦点为焦点,且顶点在原点的抛物线标准方程为______.答案:∵椭圆x23+y2=1的右焦点F(2,0),∴以F(2,0)为焦点,顶点在原点的抛物线标准方程为y2=42x.故为:y2=42x.32.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:

甲批次:0.598

0.625

0.628

0.595

0.639

乙批次:0.618

0.613

0.592

0.622

0.620

我们将比值为0.618的矩形称为“完美矩形”,0.618为标准值,根据上述两个样本来估计两个批次的总体平均数,正确结论是()

A.甲批次的总体平均数与标准值更接近

B.乙批次的总体平均数与标准值更接近

C.两个批次总体平均数与标准值接近程度相同

D.以上选项均不对答案:A33.设a=log32,b=log23,c=,则()

A.c<b<a

B.a<c<b

C.c<a<b

D.b<c<a答案:C34.设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是()A.4B.6C.8D.12答案:抛物线y2=8x的准线为x=-2,∵点P到y轴的距离是4,∴到准线的距离是4+2=6,根据抛物线的定义可知点P到该抛物线焦点的距离是6故选B35.在复平面内,记复数3+i对应的向量为OZ,若向量OZ饶坐标原点逆时针旋转60°得到向量OZ所对应的复数为______.答案:向量OZ饶坐标原点逆时针旋转60°得到向量所对应的复数为(3+i)(cos60°+isin60°)=(3+i)(12+32i)=2i,故为2i.36.已知直线3x+4y-3=0与直线6x+my+14=0平行,则它们之间的距离是______.答案:直线3x+4y-3=0即6x+8y-6=0,它直线6x+my+14=0平行,∴m=8,则它们之间的距离是d=|c1-c2|a2+b2=|-6-14|62+82=2,故为:2.37.平面向量a与b的夹角为60°,a=(2,0),|b|=1

则|a+2b|=______.答案:∵平面向量a与b的夹角为60°,a=(2,0),|b|=1

∴|a+2b|=(a+2b)2=a2+4×a?b+4b2=4+4×2×1×cos60°+4=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论