2023年濮阳医学高等专科学校高职单招(数学)试题库含答案解析_第1页
2023年濮阳医学高等专科学校高职单招(数学)试题库含答案解析_第2页
2023年濮阳医学高等专科学校高职单招(数学)试题库含答案解析_第3页
2023年濮阳医学高等专科学校高职单招(数学)试题库含答案解析_第4页
2023年濮阳医学高等专科学校高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年濮阳医学高等专科学校高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.在四面体O-ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,则OE=______(用a,b,c表示)答案:在四面体O-ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,∴OE=12(OA+OD)=OA2+OD2=12a+12×12(OB+OC)=12a+14(b+c)=12a+14b+14c,故为:12a+14b+14c.2.若点M到定点F和到定直线l的距离相等,则下列说法正确的是______.

①点M的轨迹是抛物线;

②点M的轨迹是一条与x轴垂直的直线;

③点M的轨迹是抛物线或一条直线.答案:当点F不在直线l上时,点M的轨迹是以F为焦点、l为准线的抛物线;而当点F在直线l上时,点M的轨迹是一条过点F,且与l垂直的直线.故为:③3.已知两组样本数据x1,x2,…xn的平均数为h,y1,y2,…ym的平均数为k,则把两组数据合并成一组以后,这组样本的平均数为()

A.

B.

C.

D.答案:B4.下列语句是命题的是______.

①求证3是无理数;

②x2+4x+4≥0;

③你是高一的学生吗?

④一个正数不是素数就是合数;

⑤若x∈R,则x2+4x+7>0.答案:①是祈使句,所以①不是命题.②是命题,能够判断真假,因为x2+4x+4=(x+2)2≥0,所以②是命题.③是疑问句,所以③不是命题.④能够判断真假,所以④是命题.⑤能够判断真假,因为x2+4x+7=(x+2)2+3>0,所以⑤是命题.故为:②④⑤.5.若向量且与的夹角余弦为则λ等于()

A.4

B.-4

C.

D.答案:C6.在空间直角坐标系0xyz中有两点A(2,5,1)和B(2,4,-1),则|AB|=______.答案:∵点A(2,5,1)和B(2,4,-1),∴AB=(0,-1,-2).∴|AB|=0+(-1)2+(-2)2=5.故为5.7.在△ABC中,已知角A,B,C所对的边依次为a,b,c,且2lg(sinB)=lg(sinA)+lg(sinC),则两条直线l1:xsinA+ysinB=a与l2:xsinB+ysinC=c的位置关系是______.答案:依题意,sin2B=sinA?sinC,∴sinAsinB=sinBsinC,即两直线方程中x的系数之比与y的系数之比相等,∴两条直线l1:xsinA+ysinB=a与l2:xsinB+ysinC=c平行或重合.故为:平行或重合.8.双曲线的中心是原点O,它的虚轴长为26,右焦点为F(c,0)(c>0),直线l:x=a2c与x轴交于点A,且|OF|=3|OA|.过点F的直线与双曲线交于P、Q两点.

(Ⅰ)求双曲线的方程;

(Ⅱ)若AP•AQ=0,求直线PQ的方程.答案:解.(Ⅰ)由题意,设曲线的方程为x2a2-y2b2=1(a>0,b>0)由已知a2+6=c2c=3a2c解得a=3,c=3所以双曲线的方程:x23-y26=1.(Ⅱ)由(Ⅰ)知A(1,0),F(3,0),当直线PQ与x轴垂直时,PQ方程为x=3.此时,AP•AQ≠0,应舍去.当直线PQ与x轴不垂直时,设直线PQ的方程为y=k(x-3).由方程组x23-y26=1y=k(x-3)得(k2-2)x2-6k2x+9k2+6=0由于过点F的直线与双曲线交于P、Q两点,则k2-2≠0,即k≠±2,由于△=36k4-4(k2-2)(9k2+6)=48(k2+1)>0得k∈R.∴k∈R且k≠±2(*)设P(x1,y1),Q(x2,y2),则x1+x2=6k2k2-2(1)x1x2=9k2+6k2-2(2)由直线PQ的方程得y1=k(x1-3),y2=k(x2-3)于是y1y2=k2(x1-3)(x2-3)=k2[x1x2-3(x1+x2)+9](3)∵AP•AQ=0,∴(x1-1,y1)•(x2-1,y2)=0即x1x2-(x1+x2)+1+y1y2=0(4)由(1)、(2)、(3)、(4)得9k2+6k2-2-6k2k2-2+1+k2(9k2+6k2-2-36k2k2-2+9)=0整理得k2=12,∴k=±22满足(*)∴直线PQ的方程为x-2y-3=0或x+2y-3=09.设O是坐标原点,F是抛物线y2=2px(p>0)的焦点,A是抛物线上的一点,FA与x轴正向的夹角为60°,则|OA|为______.答案:过A作AD⊥x轴于D,令FD=m,则FA=2m,p+m=2m,m=p.∴OA=(p2+p)2+(3p)2=212p.故为:212p10.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:x=22t+1y=22t,求直线l与曲线C相交所成的弦的弦长.答案:曲线C的极坐标方程是ρ=4cosθ化为直角坐标方程为x2+y2-4x=0,即(x-2)2+y2=4直线l的参数方程x=22t+1y=22t,化为普通方程为x-y-1=0,曲线C的圆心(2,0)到直线l的距离为12=22所以直线l与曲线C相交所成的弦的弦长24-12=14.11.数据a1,a2,a3,…,an的方差为σ2,则数据2a1+3,2a2+3,2a3+3,…,2an+3的方差为______.答案:∵数据a1,a2,a3,…,an的方差为σ2,∴数据2a1+3,2a2+3,2a3+3,…,2an+3的方差是22σ2=4σ2,故为:4σ2.12.在同一个坐标系中画出函数y=ax,y=sinax的部分图象,其中a>0且a≠1,则下列所给图象中可能正确的是()

A.

B.

C.

D.

答案:D13.如图,在半径为7的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为______.答案:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP•1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半径为7,则圆心O到弦CD的距离为d=r2-(CD2)2=7-(52)2=32.故为:32.14.已知O是空间任意一点,A、B、C、D四点满足任三点均不共线,但四点共面,且=2x+3y+4z,则2x+3y+4z=(

)答案:﹣115.下面玩掷骰子放球游戏,若掷出1点或6点,甲盒放一球;若掷出2点,3点,4点或5点,乙盒放一球,设掷n次后,甲、乙盒内的球数分别为x、y.

(1)当n=3时,设x=3,y=0的概率;

(2)当n=4时,求|x-y|=2的概率.答案:由题意知,在甲盒中放一球概率为13,在乙盒放一球的概率为23(3分)(1)当n=3时,x=3,y=0的概率为C03(13)3(23)0=127(6分)(2)|x-y|=2时,有x=3,y=1或x=1,y=3,它的概率为C14

(13)3(23)1+C34(13)1(23)3=4081(12分).16.如果随机变量ξ~N(0,σ2),且P(-2<ξ≤0)=0.4,则P(ξ>2)等于()

A.0.1

B.0.2

C.0.3

D.0.4答案:A17.如图所示,PD⊥平面ABCD,且四边形ABCD为正方形,AB=2,E是PB的中点,

cos〈,〉=.

(1)建立适当的空间坐标系,写出点E的坐标;

(2)在平面PAD内求一点F,使EF⊥平面PCB.答案:(1)点E的坐标是(1,1,1)(2)F是AD的中点时满足EF⊥平面PCB解析:(1)如图所示,以DA、DC、DP所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0)、B(2,2,0)、C(0,2,0),设P(0,0,2m),则E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴点E的坐标是(1,1,1).(2)∵F∈平面PAD,∴可设F(x,0,z).则=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F点的坐标为(1,0,0)即点F是AD的中点时满足EF⊥平面PCB.18.下列点在x轴上的是()

A.(0.1,0.2,0.3)

B.(0,0,0.001)

C.(5,0,0)

D.(0,0.01,0)答案:C19.已知G是△ABC的重心,过G的一条直线交AB、AC两点分别于E、F,且有AE=λAB,AF=μAC,则1λ+1μ=______.答案:∵G是△ABC的重心∴取过G平行BC的直线EF∵AE=λAB,AF=μAC∴λ=23,μ=23∴1λ+1μ=32+32=3故为320.如图,有两条相交成π3角的直线EF,MN,交点是O.一开始,甲在OE上距O点2km的A处;乙在OM距O点1km的B处.现在他们同时以2km/h的速度行走.甲沿EF的方向,乙沿NM的方向.设与OE同向的单位向量为e1,与OM同向的单位向量为e2.

(1)求e1,e2;

(2)若过2小时后,甲到达C点,乙到达D点,请用e1,e2表示CD;

(3)若过t小时后,甲到达G点,乙到达H点,请用e1,e2表示GH;

(4)什么时间两人间距最短?答案:(1)由题意可得e1=12OA,e2=OB,(2)若过2小时后,甲到达C点,乙到达D点,则OC=-2e1,OD=5e2,故CD=OD-OC=2e1+5e2,(3)同(2)可得:经过t小时后,甲到达G点,乙到达H点,则OG=(-2t+2)e1,OH=(2t+1)e2,故GH=OH-OG=(2t-2)e1+(2t+1)e2,(4)由(3)可得GH=(2t-2)e1+(2t+1)e2,故两人间距离y=|GH|=[(2t-2)e1+(2t+1)e2]2=(2t-2)2+(2t+1)2+2(2t-2)(2t+1)×12=12t2-6t+3,由二次函数的知识可知,当t=--62×12=14时,上式取到最小值32,故14时两人间距离最短.21.(坐标系与参数方程选做题)过点(2,π3)且平行于极轴的直线的极坐标方程为______.答案:法一:先将极坐标化成直角坐标表示,(2,π3)化为(1,3),过(1,3)且平行于x轴的直线为y=3,再化成极坐标表示,即ρsinθ=3.法二:在极坐标系中,直接构造直角三角形由其边角关系得方程ρsinθ=3.设A(ρ,θ)是直线上的任一点,A到极轴的距离AH=2sinπ3=3,直接构造直角三角形由其边角关系得方程ρsinθ=3.故为:ρsinθ=322.函数y=2x的值域为______.答案:因为:x≥0,所以:y=2x≥20=1.∴函数y=2x的值域为:[1,+∞).故为:[1,+∞).23.对任意实数x,y,定义运算x*y=ax+by+cxy,其中a,b,c是常数,等式右边的运算是通常的加法和乘法运算。已知1*2=3,2*3=4,并且有一个非零常数m,使得对任意实数x,都有x*m=x,则m的值是(

)。答案:424.5本不同的书全部分给3个学生,每人至少一本,共有()种分法.

A.60

B.150

C.300

D.210答案:B25.证明:已知a与b均为有理数,且a和b都是无理数,证明a+b也是无理数.答案:证明:假设a+b是有理数,则(a+b)(a-b)=a-b由a>0,b>0则a+b>0即a+b≠0∴a-b=a-ba+b∵a,bÎQ且a+b∈Q∴a-ba+b∈Q即(a-b)∈Q这样(a+b)+(a-b)=2a∈Q从而aÎQ(矛盾)∴a+b是无理数26.如图,已知PA是圆O的切线,切点为A,PO交圆O于B、C两点,PA=3,PB=1,则∠C=______.答案:∵PA切圆O于A点,PBC是圆O的割线∴PA2=PB?PC,可得(3)2=1×PC,得PC=3∵点O在BC上,即BC是圆O的直径,∴∠ABC=90°,由弦切角定理,得∠PAB=∠C,∠PAC=90°+∠C∴△PAC中,根据正弦定理,得PAsinC=PCsin∠PAC即3sinC=3sin(90°+C),整理得tanC=33∵∠C是锐角,∴∠C=30°.故为:30°27.下列对一组数据的分析,不正确的说法是()

A.数据极差越小,样本数据分布越集中、稳定

B.数据平均数越小,样本数据分布越集中、稳定

C.数据标准差越小,样本数据分布越集中、稳定

D.数据方差越小,样本数据分布越集中、稳定答案:B28.在空间直角坐标系O-xyz中,已知=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当取得最小值时,点Q的坐标为()

A.(,,)

B.(,,)

C.(,,)

D.(,,)答案:C29.下面对算法描述正确的一项是:()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同答案:算法的特点:有穷性,确定性,顺序性与正确性,不唯一性,普遍性算法可以用自然语言、图形语言,程序语言来表示,故A、B不对同一问题可以用不同的算法来描述,但结果一定相同,故D不对.C对.故应选C.30.现有以下两项调查:①某校高二年级共有15个班,现从中选择2个班,检查其清洁卫生状况;②某市有大型、中型与小型的商店共1500家,三者数量之比为1:5:9.为了调查全市商店每日零售额情况,抽取其中15家进行调查.完成①、②这两项调查宜采用的抽样方法依次是()A.简单随机抽样法,分层抽样法B.系统抽样法,简单随机抽样法C.分层抽样法,系统抽样法D.系统抽样法,分层抽样法答案:从15个班中选择2个班,检查其清洁卫生状况;总体个数不多,而且差异不大,故可采用简单随机抽样的方法,1500家大型、中型与小型的商店的每日零售额存在较大差异,故可采用分层抽样的方法故完成①、②这两项调查宜采用的抽样方法依次是简单随机抽样法,分层抽样法故选A31.设b是a的相反向量,则下列说法错误的是()

A.a与b的长度必相等

B.a与b的模一定相等

C.a与b一定不相等

D.a是b的相反向量答案:C32.在投掷两枚硬币的随机试验中,记“一枚正面朝上,一枚反面朝上”为事件A,“两枚正面朝上”为事件B,则事件A,B()

A.既是互斥事件又是对立事件

B.是对立事件而非互斥事件

C.既非互斥事件也非对立事件

D.是互斥事件而非对立事件答案:D33.f(x)=(1+2x)m+(1+3x)n(m,n∈N*)的展开式中x的系数为13,则x2的系数为()A.31B.40C.31或40D.71或80答案:(1+2x)m的展开式中x的系数为2Cm1=2m,(1+3x)n的展开式中x的系数为3Cn1=3n∴3n+2m=13∴n=1m=5或n=3m=2(1+2x)m的展开式中的x2系数为22Cm2,(1+3x)n的展开式中的x2系数为32Cn2∴当n=1m=5时,x2的系数为22Cm2+32Cn2=40当n=3m=2时,x2的系数为22Cm2+32Cn2=31故选C.34.设随机事件A、B,P(A)=35,P(B|A)=12,则P(AB)=______.答案:由条件概率的计算公式,可得P(AB)=P(A)×P(B|A)=35×12=310;故为310.35.已知a,b是非零向量,且a,b夹角为π3,则向量p=a丨a丨+b丨b丨的模为______.答案:∵|a|a||=|a||a|=1=|b|b||,a?b=|a|

|b|cosπ3=12|a|

|b|∴p2=|(a|a|+b|b|)2=1+1+2?a|a|?b|b|=2+2×12=3,∴|p|=3.故为3.36.与椭圆+y2=1共焦点且过点P(2,1)的双曲线方程是()

A.-y2=1

B.-y2=1

C.-=1

D.x2-=1答案:B37.在极坐标系中,已知点P(2,),则过点P且平行于极轴的直线的方程是()

A.ρsinθ=1

B.ρsinθ=

C.ρcosθ=1

D.ρcosθ=答案:A38.函数y=(12)x的值域为______.答案:因为函数y=(12)x是指数函数,所以它的值域是(0,+∞).故为:(0,+∞).39.A、B是直线l上的两点,AB=4,AC⊥l于A,BD⊥l于B,AC=BD=3,又AC与BD成60°的角,则C、D两点间的距离是______答案:CD=CA+AB+BD,|CD|=|

CA+AB+BD|,CD=32+32+42+2×

3×3cosθ,θ=120°或60°,CD=32+32+42±32.CD=5或43故为:5或4340.从装有2个红球和2个白球的口袋内,任取2个球,那么下面互斥而不对立的两个事件是()

A.恰有1个白球;恰有2个白球

B.至少有1个白球;都是白球

C.至少有1个白球;

至少有1个红球

D.至少有1个白球;

都是红球答案:A41.已知点G是△ABC的重心,过G作直线与AB,AC两边分别交于M,N两点,且,则的值()

A.3

B.

C.2

D.答案:B42.向量在基底{,,}下的坐标为(1,2,3),则向量在基底{}下的坐标为()

A.(3,4,5)

B.(0,1,2)

C.(1,0,2)

D.(0,2,1)答案:D43.抛物线y=x2的焦点坐标是()

A.(,0)

B.(0,)

C.(0,1)

D.(1,0)答案:C44.函数y=f(x)对任意实数x,y都有f(x+y)=f(x)+f(y)+2xy.

(1)求f(0)的值;

(2)若f(1)=1,求f(2),f(3),f(4)的值,猜想f(n)的表达式并用数学归纳法证明你的结论;

(3)若f(1)≥1,求证:f(12n)>0(n∈N*).答案:(1)令x=y=0得f(0+0)=f(0)+f(0)+2×0×0?f(0)=0(2)f(1)=1,f(2)=f(1+1)=1+1+2=4f(3)=f(2+1)=4+1+2×2×1=9f(4)=f(3+1)=9+1+2×3×1=16猜想f(n)=n2,下用数学归纳法证明之.①当n=1时猜想成立.②假设n=k时猜想成立,即:f(k)=k2,那么f(k+1)=f(k)+f(1)+2k=k2+2k+1=(k+1)2.这就是说n=k+1时猜想也成立.对于一切n≥1,n∈N+猜想都成立.(3)f(1)≥1,则f(1)=2f(12)+2×12×12≥1?f(12)≥14>0假设n=k(k∈N*)时命题成立,即f(12k)≥122k>0,则f(12k)=2f(12k+1)+2×12k+1×12k+1≥122k?f(12k+1)≥122(k+1),由上知,则f(12n)>0(n∈N*).45.用反证法证明“a+b=1”时的反设为()

A.a+b>1且a+b<1

B.a+b>1

C.a+b>1或a+b<1

D.a+b<1答案:C46.x=5

y=6

PRINT

x+y=11

END

上面程序运行时输出的结果是()

A.x+y=11

B.11

C.x+y

D.出错信息答案:B47.若方程sin2x+4sinx+m=0有实数解,则m的取值范围是(

A、R

B、(-∞,-5]∪[3,+∞)

C、(-5,3)

D、[-5,3]答案:D48.不等式:>0的解集为A.(-2,1)B.(2,+∞)C.(-2,1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)答案:C解析:不等式:>0,∴,原不等式的解集为(-2,1)∪(2,+∞),选C。49.抛物线x=14ay2的焦点坐标为()A.(116a,0)B.(a,0)C.(0,116a)D.(0,a)答案:抛物线x=14ay2可化为:y2=4ax,它的焦点坐标是(a,0)故选B.50.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:由平面与平面垂直的判定定理知如果m为平面α内的一条直线,m⊥β,则α⊥β,反过来则不一定所以“α⊥β”是“m⊥β”的必要不充分条件.故选B.第2卷一.综合题(共50题)1.“所有9的倍数(M)都是3的倍数(P),某奇数(S)是9的倍数(M),故此奇数(S)是3的倍数(P)”,上述推理是()

A.小前提错

B.结论错

C.正确的

D.大前提错答案:C2.A、B、C是我军三个炮兵阵地,A在B的正东方向相距6千米,C在B的北30°西方向,相距4千米,P为敌炮阵地.某时刻,A发现敌炮阵地的某信号,由于B、C比A距P更远,因此,4秒后,B、C才同时发现这一信号(该信号的传播速度为每秒1千米).若从A炮击敌阵地P,求炮击的方位角.答案:以线段AB的中点为原点,正东方向为x轴的正方向建立直角坐标系,则A(3,0)

B(-3,0)

C(-5,23)依题意|PB|-|PA|=4∴P在以A、B为焦点的双曲线的右支上.这里a=2,c=3,b2=5.其方程为

x24-y25=1

(x>0)…(3分)又|PB|=|PC|,∴P又在线段BC的垂直平分线上x-3y+7=0…(5分)由方程组x-3y+7=05x2-4y2=20解得

x=8(负值舍去)y=53即

P(8,53)…(8分)由于kAP=3,可知P在A北30°东方向.…(10分)3.在平行六面体ABCD-A′B′C′D′中,向量是()

A.有相同起点的向量

B.等长的向量

C.共面向量

D.不共面向量答案:C4.在△ABC中,DE∥BC,DE将△ABC分成面积相等的两部分,那么DE:BC=()

A.1:2

B.1:3

C.

D.1:1答案:C5.不等式-x≤1的解集是(

)。答案:{x|0≤x≤2}6.对任意实数x,y,定义运算x*y=ax+by+cxy,其中a,b,c是常数,等式右边的运算是通常的加法和乘法运算。已知1*2=3,2*3=4,并且有一个非零常数m,使得对任意实数x,都有x*m=x,则m的值是(

)。答案:47.已知a=(3,3,2),b=(4,-3,7),c=(0,5,1),则(a+b)•c=______.答案:由于a=(3,3,2),b=(4,-3,7),则a+b=(7,0,9)又由c=(0,5,1),则(a+b)•c=(7,0,9)•(0,5,1)=9故为98.设两个正态分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲线如图所示,则有()

A.μ1<μ2,σ1>σ2

B.μ1<μ2,σ1<σ2

C.μ1>μ2,σ1>σ2

D.μ1>μ2,σ1<σ2

答案:A9.某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立.现已知当n=5时,该命题不成立,那么可推得()

A.当n=6时,该命题不成立

B.当n=6时,该命题成立

C.当n=4时,该命题不成立

D.当n=4时,该命题成立答案:C10.设点P(t2+2t,1)(t>0),则|OP|(O为坐标原点)的最小值是()A.3B.5C.3D.5答案:解析:由已知得|OP|=(t2+2t)

2+1≥(2t2×2t)2+1=5,当t=2时取得等号.故选D.11.考虑坐标平面上以O(0,0),A(3,0),B(0,4)为顶点的三角形,令C1,C2分别为△OAB的外接圆、内切圆.请问下列哪些选项是正确的?

(1)C1的半径为2

(2)C1的圆心在直线y=x上

(3)C1的圆心在直线4x+3y=12上

(4)C2的圆心在直线y=x上

(5)C2的圆心在直线4x+3y=6上.答案:O,A,B三点的位置如右图所示,C1,C2为△OAB的外接圆与内切圆,∵△OAB为直角三角形,∴C1为以线段AB为直径的圆,故半径为12|AB|=52,所以(1)选项错误;又C1的圆心为线段AB的中点(32,2),此点在直线4x+3y=12上,所以选项(2)错误,选项(3)正确;如图,P为△OAB的内切圆C2的圆心,故P到△OAB的三边距离相等均为圆C2的半径r.连接PA,PB,PC,可得:S△OAB=S△POA+S△PAB+S△POB?12×3×4=12×3×r+12×5×r+12×4×r?r=1故P的坐标为(1,1),此点在y=x上.所以选项(4)正确,选项(5)错误,综上,正确的选项有(3)、(4).12.设P、Q为两个非空实数集,定义集合P+Q={a+b|a∈P,b∈Q}.若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是()A.6B.7C.8D.9答案:∵P={0,2,5},Q={1,2,6},P+Q={a+b|a∈P,b∈Q}∴当a=0时,b∈Q,P+Q={1,2,6}当a=2时,b∈Q,P+Q={3,4,8}当a=5时,b∈Q,P+Q={6,7,11}∴P+Q={1,2,3,4,6,7,8,11}故选C13.设x>0,y>0且x≠y,求证答案:证明略解析:由x>0,y>0且x≠y,要证明只需

即只需由条件,显然成立.∴原不等式成立14.已知矩阵A将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是11,(1)求矩阵A.(2)β=40,求A5β.答案:(1)设A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.

7分(2)A=2130的特征多项式为f(λ)=.λ-2-1-3λ.=

-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3时,α1=11,λ2=-1时,α2=1-3令β=mα1+α2,则β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.15.双曲线x2a2-y2b2=1,(a>0,b>0)的一条渐近线方程是y=3x,坐标原点到直线AB的距离为32,其中A(a,0),B(0,-b).

(1)求双曲线的方程;

(2)若B1是双曲线虚轴在y轴正半轴上的端点,过点B作直线交双曲线于点M,N,求B1M⊥B1N时,直线MN的方程.答案:(1)∵A(a,0),B(0,-b),∴设直线AB:xa-yb=1∴ba=3aba2+b2=32,∴a=3b=3,∴双曲线方程为:x23-y29=1.(2)∵双曲线方程为:x23-y29=1,∴A1(-3,0),A2(3,0),设P(x0,y0),∴kPA1=y0x0+3,kPA2=y0x0-3,∴k1k2=y02x02-3=3x02-9x02-3=3.B(0,-3)B1(0,3),设M(x1,y1),N(x2,y2)∴设直线l:y=kx-3,∴y=kx-33x2-y2=9,∴3x2-(kx-3)2=9.(3-k2)x2+6kx-18=0,∴x1+x2=6kk2-3

y1+y2=k(x1+x2)-6=18k2-3x1x2=18k2-3

y1y2=k2(x1x2)-3k(x1+x2)+9∵B1M=(x1,y1-3)

B1N=(x2,y2-3)∵B1M•B1N=0∴x1x2+y1y2-3(y1+y2)+9=018k2-3+9-54k2-3+9=0k2=5,即k=±5代入(1)有解,∴lMN:y=±5x-3.16.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:

第一步:取A=89,B=96,C=99;

第二步:______;

第三步:______;

第四步:输出计算的结果.答案:由题意,第二步,求和S=A+B+C,第三步,计算平均成绩.x=A+B+C3.故为:S=A+B+C;.x=A+B+C3.17.已知f(x)=,a≠b,

求证:|f(a)-f(b)|<|a-b|.答案:证明略解析:方法一

∵f(a)=,f(b)=,∴原不等式化为|-|<|a-b|.∵|-|≥0,|a-b|≥0,∴要证|-|<|a-b|成立,只需证(-)2<(a-b)2.即证1+a2+1+b2-2<a2-2ab+b2,即证2+a2+b2-2<a2-2ab+b2.只需证2+2ab<2,即证1+ab<.当1+ab<0时,∵>0,∴不等式1+ab<成立.从而原不等式成立.当1+ab≥0时,要证1+ab<,只需证(1+ab)2<()2,即证1+2ab+a2b2<1+a2+b2+a2b2,即证2ab<a2+b2.∵a≠b,∴不等式2ab<a2+b2成立.∴原不等式成立.方法二

∵|f(a)-f(b)|=|-|==,又∵|a+b|≤|a|+|b|=+<+,∴<1.∵a≠b,∴|a-b|>0.∴|f(a)-f(b)|<|a-b|.18.用数学归纳法证明“<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是()

A.2k-1

B.2k-1

C.2k

D.2k+1答案:C19.直线y=kx+1与椭圆x29+y24=1的位置关系是()A.相交B.相切C.相离D.不确定答案:∵直线y=kx+1过定点(0,1),把(0,1)代入椭圆方程的左端有0+14<1,即(0,1)在椭圆内部,∴直线y=kx+1与椭圆x29+y24=1必相交,

因此可排除B、C、D;

故选A.20.若不等式对一切x恒成立,求实数m的范围.答案:见解析解析:∵x2-8x+20=(x-4)2+4>0,∴只须mx2-mx-1<0恒成立,即可:①

当m=0时,-1<0,不等式成立;②

当m≠0时,则须,解得-4<m<0.由(1)、(2)得:-4<m≤0.</m<0.21.某计算机程序每运行一次都随机出现一个五位的二进制数A=

,其中A的各位数中,a1=1,ak(k=2,3,4,5)出现0的概率为,出现1的概率为.记ξ=a1+a2+a3+a4+a5,当程序运行一次时,ξ的数学期望Eξ=()

A.

B.

C.

D.答案:C22.用反证法证明:“a>b”,应假设为()

A.a>b

B.a<b

C.a=b

D.a≤b答案:D23.平面向量a与b的夹角为60°,a=(2,0),|b|=1

则|a+2b|=______.答案:∵平面向量a与b的夹角为60°,a=(2,0),|b|=1

∴|a+2b|=(a+2b)2=a2+4×a?b+4b2=4+4×2×1×cos60°+4=23.故为:23.24.三棱锥P-ABC中,M为BC的中点,以为基底,则可表示为()

A.

B.

C.

D.答案:D25.(理)在极坐标系中,半径为1,且圆心在(1,0)的圆的方程为()

A.ρ=sinθ

B.ρ=cosθ

C.ρ=2sinθ

D.ρ=2cosθ答案:D26.参数方程(θ为参数)化为普通方程是()

A.2x-y+4=0

B.2x+y-4=0

C.2x-y+4=0,x∈[2,3]

D.2x+y-4=0,x∈[2,3]答案:D27.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|=()A.43B.8C.83D.16答案:抛物线的焦点F(2,0),准线方程为x=-2,直线AF的方程为y=-3(x-2),所以点A(-2,43)、P(6,43),从而|PF|=6+2=8故选B.28.已知求证:答案:证明见解析解析:证明:29.已知实数x、y满足(x-2)2+y2+(x+2)2+y2=6,则2x+y的最大值等于______.答案:∵实数x、y满足(x-2)2+y2+(x+2)2+y2=6,∴点(x,y)的轨迹是椭圆,其方程为x29+y25=1,所以可设x=3cosθ,y=5sinθ,则z=6cosθ+5sinθ=41sin(θ+

β)≤41,∴2x+y的最大值等于41.故为:4130.现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a24.类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为______.答案:∵同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a24,类比到空间有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为a38,故为a38.31.已知a,b,c,d都是正数,S=aa+b+d+bb+c+a+cc+d+a+dd+a+c,则S的取值范围是______.答案:∵a,b,c,d都是正数,∴S=aa+b+d+bb+c+a+cc+d+a+dd+a+c>aa+b+c+d+ba+b+c+d+ca+b+c+d+da+b+c+d=a+b+c+da+b+c+d=1;S=aa+b+d+bb+c+a+cc+d+a+dd+a+c<aa+b+bb+a+cc+d+dd+c=2∴1<S<2.故为:(1,2)32.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:()A.110B.120C.140D.1120答案:由题意知本题是一个古典概型,∵试验发生包含的所有事件是10位同学参赛演讲的顺序共有:A1010;满足条件的事件要得到“一班有3位同学恰好被排在一起而二班的2位同学没有被排在一起的演讲的顺序”可通过如下步骤:①将一班的3位同学“捆绑”在一起,有A33种方法;②将一班的“一梱”看作一个对象与其它班的5位同学共6个对象排成一列,有A66种方法;③在以上6个对象所排成一列的7个间隙(包括两端的位置)中选2个位置,将二班的2位同学插入,有A72种方法.根据分步计数原理(乘法原理),共有A33?A66?A72种方法.∴一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:P=A33?A66?A27A1010=120.故选B.33.若lga,lgb是方程2x2-4x+1=0的两个根,则的值等于

A.2

B.

C.4

D.答案:A34.已知D是△ABC所在平面内一点,,则()

A.

B.

C.=

D.答案:A35.四个森林防火观察站A,B,C,D的坐标依次为(5,0),(-5,0),(0,5),(0,-5),他们都发现某一地区有火讯.若A,B观察到的距离相差为6,且离A近,C,D观察到的距离相差也为6,且离C近.试求火讯点的坐标.答案:设火讯点的坐标P(x,y),由于观察到的距离相差为6,点P在双曲线上,由于离A近,所以点P在双曲线x29-y216=1(x≥3)上;由于离C近,所以点P在双曲线Y29-X216=1(Y≥3)上;由这两个方程解得:x=1277y=1277答:火讯点的坐标为:(1277,1277).36.以椭圆的焦点为顶点、顶点为焦点的双曲线方程是()

A.

B.

C.

D.答案:C37.方程组的解集是[

]A.

B.{x,y|x=3且y=-7}

C.{3,-7}

D.{(x,y)|x=3且y=-7}答案:D38.用反证法证明命题“如果a>b,那么a3>b3“时,下列假设正确的是()

A.a3<b3

B.a3<b3或a3=b3

C.a3<b3且a3=b3

D.a3>b3答案:B39.已知一种材料的最佳加入量在110g到210g之间.若用0.618法安排试验,则第一次试点的加入量可以是(

)g。答案:171.8或148.240.抛物线y=4x2的焦点坐标为()

A.(1,0)

B.(0,)

C.(0,1)

D.(,0)答案:B41.椭圆x225+y29=1的两焦点为F1,F2,一直线过F1交椭圆于P、Q,则△PQF2的周长为______.答案:∵a=5,由椭圆第一定义可知△PQF2的周长=4a.∴△PQF2的周长=20.,故为20.42.在repeat语句的一般形式中有“until

A”,其中A是

(

)A.循环变量B.循环体C.终止条件D.终止条件为真答案:D解析:此题考查程序语句解:Until标志着直到型循环,直到终止条件为止,因此until后跟的是终止条件为真的语句.答案:D.43.已知圆锥的母线长与底面半径长之比为3:1,一个正方体有四个顶点在圆锥的底面内,另外的四个顶点在圆锥的侧面上(如图),则圆锥与正方体的表面积之比为(

A.π:1

B.3π:1

C.3π:2

D.3π:4

答案:D44.已知圆柱的轴截面周长为6,体积为V,则下列关系式总成立的是()A.V≥πB.V≤πC.V≥18πD.V≤18π答案:设圆柱的底面半径为r,高为h,由题意得:4r+2h=6,即2r+h=3,∴体积为V=πr2h≤π[13(r+r+h)]2=π×(33)2=π当且仅当r=h时取等号,由此可得V≤π恒成立故选:B45.意大利数学家菲波拉契,在1202年出版的一书里提出了这样的一个问题:一对兔子饲养到第二个月进入成年,第三个月生一对小兔,以后每个月生一对小兔,所生小兔能全部存活并且也是第二个月成年,第三个月生一对小兔,以后每月生一对小兔.问这样下去到年底应有多少对兔子?试画出解决此问题的程序框图,并编写相应的程序.答案:见解析解析:解:根据题意可知,第一个月有对小兔,第二个月有对成年兔子,第三个月有两对兔子,从第三个月开始,每个月的兔子对数是前面两个月兔子对数的和,设第个月有对兔子,第个月有对兔子,第个月有对兔子,则有,一个月后,即第个月时,式中变量的新值应变第个月兔子的对数(的旧值),变量的新值应变为第个月兔子的对数(的旧值),这样,用求出变量的新值就是个月兔子的数,依此类推,可以得到一个数序列,数序列的第项就是年底应有兔子对数,我们可以先确定前两个月的兔子对数均为,以此为基准,构造一个循环程序,让表示“第×个月的从逐次增加,一直变化到,最后一次循环得到的就是所求结果.流程图和程序如下:S=1Q=1I=3WHILE

I<=12F=S+QQ=SS=FI=I+1WENDPRINT

FEND46.设函数f(x)=(2a-1)x+b是R上的减函数,则a的范围为______.答案:∵f(x)=(2a-1)x+b是R上的减函数,∴2a-1<0,解得a<12.故为:a<12.47.已知|a|=3,|b|=2,a与b的夹角为300,则|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a与b的夹角为300,∴a?b=|a||b|cos30°=2×3×32=3则|a+b|=a2+2a?b+b2=13故选A48.在边长为1的正方形中,有一个封闭曲线围成的阴影区域,在正方形中随机的撒入100粒豆子,恰有60粒落在阴影区域内,那么阴影区域的面积为______.

答案:设阴影部分的面积为x,由概率的几何概型知,则60100=x1,解得x=35.故为:35.49.设O为坐标原点,给定一个定点A(4,3),而点B(x,0)在x正半轴上移动,l(x)表示AB的长,则△OAB中两边长的比值的最大值为()

A.

B.

C.

D.答案:B50.抛物线的顶点在原点,焦点与椭圆=1的一个焦点重合,则抛物线方程是()

A.x2=±8y

B.y2=±8x

C.x2=±4y

D.y2=±4x答案:A第3卷一.综合题(共50题)1.数学归纳法证明“2n+1≥n2+n+2(n∈N*)”时,第一步验证的表达式为______.答案:根据数学归纳法的步骤,首先要验证证明当n取第一个值时命题成立;结合本题,要验证n=1时,2n+1≥n2+n+2的成立;即21+1≥12+1+2成立;故为:21+1≥12+1+2(22≥4或4≥4也算对).2.圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ.

(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;

(2)求经过圆O1,圆O2交点的直线的直角坐标方程.答案:以有点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1)x=ρcosθ,y=ρsinθ,由ρ=4cosθ得ρ2=4ρcosθ.所以x2+y2=4x.即x2+y2-4x=0为圆O1的直角坐标方程.….(3分)同理x2+y2+4y=0为圆O2的直角坐标方程.….(6分)(2)由x2+y2-4x=0x2+y2+4y=0解得x1=0y1=0x2=2y2=-2.即圆O1,圆O2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x.…(10分)3.如图表示空间直角坐标系的直观图中,正确的个数为()

A.1个

B.2个

C.3个

D.4个答案:C4.已知向量=(1,2),=(2,x),且=-1,则x的值等于()

A.

B.

C.

D.答案:D5.直线x+y-1=0到直线xsinα+ycosα-1=0(<α<)的角是()

A.α-

B.-α

C.α-

D.-α答案:D6.已知集合A={x|log2x<1},B={x|0<x<c,其中c>0},若A=B,则c=______.答案:集合A={x|log2x<1}={x|0<x<2},B={x|0<x<c,其中c>0},若A=B,则c=2,故为2.7.若指数函数f(x)与幂函数g(x)的图象相交于一点(2,4),则f(x)=______,g(x)=______.答案:设f(x)=ax(a>0且a≠1),g(x)=xα将(2,4)代入两个解析式得4=a2,4=2α解得a=2,α=2故为:f(x)=2x,g(x)=x28.有50件产品编号从1到50,现在从中抽取抽取5件检验,用系统抽样确定所抽取的编号为()

A.5,10,15,20,25

B.5,15,20,35,40

C.5,11,17,23,29

D.10,20,30,40,50答案:D9.给出下列四个命题,其中正确的一个是()

A.在线性回归模型中,相关指数R2=0.80,说明预报变量对解释变量的贡献率是80%

B.在独立性检验时,两个变量的2×2列联表中对角线上数据的乘积相差越大,说明这两个变量没有关系成立的可能性就越大

C.相关指数R2用来刻画回归效果,R2越小,则残差平方和越大,模型的拟合效果越差

D.随机误差e是衡量预报精确度的一个量,它满足E(e)=0答案:D10.已知点B是点A(2,-3,5)关于平面xOy的对称点,则|AB|=()

A.10

B.

C.

D.38答案:A11.已知二项分布ξ~B(4,12),则该分布列的方差Dξ值为______.答案:∵二项分布ξ~B(4,12),∴该分布列的方差Dξ=npq=4×12×(1-12)=1故为:112.若图中的直线l1,l2,l3的斜率为k1,k2,k3则()

A.k1<k2<k3

B.k3<k1<k2

C.k2<k1<k3

D.k3<k2<k1

答案:C13.若图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则()

A.k1<k2<k3

B.k3<k1<k2

C.k3<k2<k1

D.k1<k3<k2

答案:D14.如果输入2,那么执行图中算法的结果是()A.输出2B.输出3C.输出4D.程序出错,输不出任何结果答案:第一步:输入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:输出4故为C.15.设P点在x轴上,Q点在y轴上,PQ的中点是M(-1,2),则|PQ|等于______.答案:设P(a,0),Q(0,b),∵PQ的中点是M(-1,2),∴由中点坐标公式得a+02=-10+b2=2,解之得a=-2b=4,因此可得P(-2,0),Q(0,4),∴|PQ|=(-2-0)2+(0-4)2=25.故为:2516.把函数y=4x的图象按平移到F′,F′的函数解析式为y=4x-2-2,则向量的坐标等于_____答案:(2,-2)解析:把函数y=4x的图象按平移到F′,F′的函数解析式为y=4x-2-2,则向量的坐标等于_____17.用反证法证明命题“三角形中最多只有一个内角是钝角”时,则假设的内容是()

A.三角形中有两个内角是钝角

B.三角形中有三个内角是钝角

C.三角形中至少有两个内角是钝角

D.三角形中没有一个内角是钝角答案:C18.已知求证:答案:证明见解析解析:证明:19.甲、乙两人参加一次考试,已知在备选的10道试题中,甲能答对其中6题,乙能答对其中8题.若规定每次考试分别都从这10题中随机抽出3题进行测试,至少答对2题算合格.

(1)分别求甲、乙两人考试合格的概率;

(2)求甲、乙两人至少有一人合格的概率.答案:(1)(2)解析:(1)设甲、乙考试合格分别为事件A、B,甲考试合格的概率为P(A)=,乙考试合格的概率为P(B)=.(2)A与B相互独立,且P(A)=,P(B)=,则甲、乙两人至少有一人合格的概率为P(AB++A)=×+×+×=.20.用随机数表法从100名学生(男生35人)中选20人作样本,男生甲被抽到的可能性为()A.15B.2035C.35100D.713答案:由题意知,本题是一个等可能事件的概率,试验发生包含的事件是用随机数表法从100名学生选一个,共有100种结果,满足条件的事件是抽取20个,∴根据等可能事件的概率公式得到P=20100=15,故选A.21.在参数方程所表示的曲线上有B、C两点,它们对应的参数值分别为t1、t2,则线段BC的中点M对应的参数值是()

A.

B.

C.

D.答案:B22.抛物线y2=4px(p>0)的准线与x轴交于M点,过点M作直线l交抛物线于A、B两点.

(1)若线段AB的垂直平分线交x轴于N(x0,0),求证:x0>3p;

(2)若直线l的斜率依次为p,p2,p3,…,线段AB的垂直平分线与x轴的交点依次为N1,N2,N3,…,当0<p<1时,求1|N1N2|+1|N2N3|+…+1|N10N11|的值.答案:(1)证明:设直线l方程为y=k(x+p),代入y2=4px.得k2x2+(2k2p-4p)x+k2p2=0.△=4(k2p-2p)2-4k2•k2p2>0,得0<k2<1.令A(x1,y1)、B(x2,y2),则x1+x2=-2k2p-4pk2,y1+y2=k(x1+x2+2p)=4pk,AB中点坐标为(2P-k2Pk2,2pk).AB垂直平分线为y-2pk=-1k(x-2P-k2Pk2).令y=0,得x0=k2P+2Pk2=p+2Pk2.由上可知0<k2<1,∴x0>p+2p=3p.∴x0>3p.(2)∵l的斜率依次为p,p2,p3,时,AB中垂线与x轴交点依次为N1,N2,N3,(0<p<1).∴点Nn的坐标为(p+2p2n-1,0).|NnNn+1|=|(p+2p2n-1)-(p+2p2n+1)|=2(1-p2)p2n+1,1|NnNn+1|=p2n+12(1-p2),所求的值为12(1-p2)[p3+p4++p21]=p3(1-p19)2(1-p)2(1+p).23.已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P(43,13).

(I)求椭圆C的离心率:

(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且2|AQ|2=1|AM|2+1|AN|2,求点Q的轨迹方程.答案:(I)∵椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P(43,13).∴c=1,2a=PF1+PF2=(43+1)2+19+(43-1)2+19=22,即a=2∴椭圆的离心率e=ca=12=22…4分(II)由(I)知,椭圆C的方程为x22+y2=1,设点Q的坐标为(x,y)(1)当直线l与x轴垂直时,直线l与椭圆C交于(0,1)、(0,-1)两点,此时点Q的坐标为(0,2-355)(2)当直线l与x轴不垂直时,可设其方程为y=kx+2,因为M,N在直线l上,可设点M,N的坐标分别为(x1,kx1+2),(x2,kx2+2),则|AM|2=(1+k2)x1

2,|AN|2=(1+k2)x2

2,又|AQ|2=(1+k2)x2,2|AQ|2=1|AM|2+1|AN|2∴2(1+k2)x2=1(1+k2)x1

2+1(1+k2)x2

2,即2x2=1x1

2+1x2

2=(x1+x2)2-2x1x2x1

2x2

2…①将y=kx+2代入x22+y2=1中,得(2k2+1)x2+8kx+6=0…②由△=(8k)2-24(2k2+1)>0,得k2>32由②知x1+x2=-8k2k2+1,x1x2=62k2+1,代入①中化简得x2=1810k2-3…③因为点Q在直线y=kx+2上,所以k=y-2x,代入③中并化简得10(y-2)2-3x2=18由③及k2>32可知0<x2<32,即x∈(-62,0)∪(0,62)由题意,Q(x,y)在椭圆C内,所以-1≤y≤1,又由10(y-2)2-3x2=18得(y-2)2∈[95,94)且-1≤y≤1,则y∈(12,2-355)所以,点Q的轨迹方程为10(y-2)2-3x2=18,其中x∈(-62,62),y∈(12,2-355)…13分24.若矩阵A=

72

69

67

65

62

59

81

74

68

64

59

52

85

79

76

72

69

64

228

219

211

204

195

183

是表示我校2011届学生高二上学期的期中成绩矩阵,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含义如下:i=1表示语文成绩,i=2表示数学成绩,i=3表示英语成绩,i=4表示语数外三门总分成绩j=k,k∈N*表示第50k名分数.若经过一定量的努力,各科能前进的名次是一样的.现小明的各科排名均在250左右,他想尽量提高三门总分分数,那么他应把努力方向主要放在哪一门学科上()

A.语文

B.数学

C.外语

D.都一样答案:B25.设圆M的方程为(x-3)2+(y-2)2=2,直线L的方程为x+y-3=0,点P的坐标为(2,1),那么()

A.点P在直线L上,但不在圆M上

B.点P在圆M上,但不在直线L上

C.点P既在圆M上,又在直线L上

D.点P既不在直线L上,也不在圆M上答案:C26.“因为指数函数y=ax是增函数(大前提),而y=()x是指数函数(小前提),所以y=()x是增函数(结论)”,上面推理的错误是()

A.大前提错导致结论错

B.小前提错导致结论错

C.推理形式错导致结论错

D.大前提和小前提错都导致结论错答案:A27.已知sint+cost=1,设s=cost+isint,求f(s)=1+s+s2+…sn.答案:sint+cost=1∴(sint+cost)2=1+2sint?cost=1∴2sint?cost=sin2t=0则cost=0,sint=1或cost=1,sint=0,当cost=0,sint=1时,s=cost+isint=i则f(s)=1+s+s2+…sn=1+i,n=4k+1i,n=4k+20,n=4k+31,n=4(k+1)(k∈N+)当cost=1,sint=0时,s=cost+isint=1则f(s)=1+s+s2+…sn=n+128.直角三角形两直角边边长分别为3和4,将此三角形绕其斜边旋转一周,求得到的旋转体的表面积和体积.答案:根据题意,所求旋转体由两个同底的圆锥拼接而成它的底面半径等于直角三角形斜边上的高,高分别等于两条直角边在斜边的射影长∵两直角边边长分别为3和4,∴斜边长为32+42=5,由面积公式可得斜边上的高为h=3×45=125可得所求旋转体的底面半径r=125因此,两个圆锥的侧面积分别为S上侧面=π×125×4=48π5;S下侧面=π×125×3=36π5∴旋转体的表面积S=48π5+36π5=84π5由锥体的体积公式,可得旋转体的体积为V=13π×(125)2×5=48π529.已知a>0,且a≠1,解关于x的不等式:

答案:①当a>1时,原不等式解为{x|0<x≤loga2②当0<a<1时,原不等式解为{x|loga2≤x<0解析:原不等式等价于原不等式同解于7分由①②得1<ax<4,由③得从而1<ax≤210分①当a>1时,原不等式解为{x|0<x≤loga2②当0<a<1时,原不等式解为{x|loga2≤x<030.点P(1,2,2)到原点的距离是()

A.9

B.3

C.1

D.5答案:B31.椭圆x29+y216=1上一动点P到两焦点距离之和为()A.10B.8C.6D.不确定答案:根据椭圆的定义,可知动点P到两焦点距离之和为2a=8,故选B.32.有四条线段,其长度分别为2,3,4,5,现从中任取三条,则以这三条线段为边可以构成三角形的概率是______.答案:所有的取法共有C34=4种,三条线段构成三角形的条件是任意两边之和大于第三边,其中能够成三角形的取法有①2、3、4;②2、4、5;③3、4、5,共有3种,故这三条线段为边可以构成三角形的概率是34,故为34.33.(几何证明选做题)若A,B,C是⊙O上三点,PC切⊙O于点C,∠ABC=110°,∠BCP=40°,则∠AOB的大小为______.答案:∵PC切⊙O于点C,OC为圆的半径∴OC⊥PC,即∠PCO=90°∵∠BCP=40°∴∠BCO=50°由弦切角定理及圆周角定理可知,∠BOC=2∠PCB=80°∵△BOC中,∠OBC=50°,∠ABC=110°∴∠OBA=60°∵OB=OA∴∠AOB=60

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论