版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年包头铁道职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.直三棱柱ABC-A1B1C1中,若CA=a,CB=b,CC1=c,则A1B=()A.a+b-cB.a-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-c+b-a故选D.2.已知正三角形ABC的边长为a,求△ABC的直观图△A′B′C′的面积.答案:如图①、②所示的实际图形和直观图.由②可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于D′,则C′D′=22O′C′=68a.∴S△A′B′C′=12A′B′?C′D′=12×a×68a=616a2.3.用反证法证明命题:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,则a,b,c,d中至少有一个负数”时的假设为()
A.a,b,c,d中至少有一个正数
B.a,b,c,d全为正数
C.a,b,c,d全都大于等于0
D.a,b,c,d中至多有一个负数答案:C4.将两粒均匀的骰子各抛掷一次,观察向上的点数,计算:
(1)共有多少种不同的结果?并试着列举出来.
(2)两粒骰子点数之和等于3的倍数的概率;
(3)两粒骰子点数之和为4或5的概率.答案:(1)每一粒均匀的骰子抛掷一次,都有6种结果,根据分步计数原理,所有可能结果共有6×6=36种.
…(4分)(2)两粒骰子点数之和等于3的倍数的有以下12种:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(5,4),(4,5),(6,6),共有12个结果,因此,两粒骰子点数之和等于3的倍数的概率是1236=13.
…(8分)(3)两粒骰子点数之和为4或5的有以下7种:(2,2),(1,3),(3,1),(2,3),(3,2),(1,4),(4,1),因此,两粒骰子点数之和为4或5的概率为736.
…(12分)5.如图所示,I为△ABC的内心,求证:△BIC的外心O与A、B、C四点共圆.答案:证明:连接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是内心知∠ABC=2∠IBC.从而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四点共圆.6.直线y=kx+1与椭圆x29+y24=1的位置关系是()A.相交B.相切C.相离D.不确定答案:∵直线y=kx+1过定点(0,1),把(0,1)代入椭圆方程的左端有0+14<1,即(0,1)在椭圆内部,∴直线y=kx+1与椭圆x29+y24=1必相交,
因此可排除B、C、D;
故选A.7.复数Z=arccosx-π+(-2x)i(x∈R,i是虚数单位),在复平面上的对应点只可能位于()A.第一象限B.第二象限C.第三象限D.第四象限答案:∵a=arccosx-π,arccosx∈[0,π],∴a<0,∵b=-2x<0,∴复数Z对应的点的实部和虚部都小于零,∴复数在第三象限,故选C.8.直线ax+2y+3=0和直线2x+ay-1=0具有相同的方向向量,则a=______.答案:∵直线ax+2y+3=0和直线2x+ay-1=0具有相同的方向向量∴两条直线互相平行,可得a2=2a≠3-1,解之得a=±2故为:±29.如图,正方体ABCD-A1B1C1D1中,点E是棱BC的中点,点F
是棱CD上的动点.
(Ⅰ)试确定点F的位置,使得D1E⊥平面AB1F;
(Ⅱ)当D1E⊥平面AB1F时,求二面角C1-EF-A的余弦值以及BA1与面C1EF所成的角的大小.答案:(I)由题意可得:以A为原点,分别以直线AB、AD、AA1为x轴、y轴、z轴建立空间直角坐标系,不妨设正方体的棱长为1,且DF=x,则A1(0,0,1),A(0,0,0),B(1,0,0),D(0,1,0),B1(1,0,1),D1(0,1,1),E(1,12,0),F(x,1,0)所以D1E=(1,-12,-1),AB1=(1,0,1),AF=(x,1,0)由D1E⊥面AB1F⇔D1E⊥AB1且D1E⊥AF,所以D1E•AB1=0D1E•AF=0,可解得x=12所以当点F是CD的中点时,D1E⊥平面AB1F.(II)当D1E⊥平面AB1F时,F是CD的中点,F(12,1,0)由正方体的结构特征可得:平面AEF的一个法向量为m=(0,0,1),设平面C1EF的一个法向量为n=(x,y,z),在平面C1EF中,EC1=(0,12,1),EF=(-12,12,0),所以EC1•n=0EF•n
=0,即y=-2zx=y,所以取平面C1EF的一个法向量为n=(2,2,-1),所以cos<m,n>=-13,所以<m,n>=π-arccos13,又因为当把m,n都移向这个二面角内一点时,m背向平面AEF,而n指向平面C1EF,所以二面角C1-EF-A的大小为π-arccos13又因为BA1=(-1,0,1),所以cos<BA1,n>=-22,所以<BA1,n>=135∘,∴BA1与平面C1EF所成的角的大小为45°.10.刻画数据的离散程度的度量,下列说法正确的是(
)
(1)应充分利用所得的数据,以便提供更确切的信息;
(2)可以用多个数值来刻画数据的离散程度;
(3)对于不同的数据集,其离散程度大时,该数值应越小.
A.(1)和(3)
B.(2)和(3)
C.(1)和(2)
D.都正确答案:C11.已知某离散型随机变量ξ的数学期望Eξ=76,ξ的分布列如下,则a=______.
答案:∵Eξ=76=0×a+1×13+2×16+3b∴b=16,∵P(ξ=0)+P(ξ=1)+P(ξ=2)+P(ξ=3)=1∴a+13+16+16=1∴a=13.故为:1312.如图,在梯形ABCD中,对角线AC和BD交于点O,E、F分别是AC和BD的中点,分别写出
(1)图中与EF、CO共线的向量;
(2)与EA相等的向量.答案:(1)由图可知,与EF共线的向量有:CD、AB;与CO共线的向量有:CE、CA、OE、OA、EA;(2)由E为CA的中点可知,CE=EA,即与EA相等的向量为CE;13.(几何证明选讲选选做题)如图,圆的两条弦AC、BD相交于P,弧AB、BC、CD、DA的度数分别为60°、105°、90°、105°,则PAPC=______.答案:连接AB,CD∵弧AB、CD、的度数分别为60°、90°,∴弦AB的长度等于半径,弦CD的长度等于半径的2倍,即ABCD=12,∵∠A=∠D,∠C=∠B,∴△ABP∽△CDP∴ABCD=PAPC∴PAPC=12=22,故为:2214.已知四边形ABCD,
点E、
F、
G、
H分别是AB、BC、CD、DA的中点,
求证:
EF=HG.答案:证明:∵E、F、G、H分别是AB、BC、CD、DA的中点,∴HG=12AC,EF=12AC,∴EF=HG.15.对某种电子元件进行寿命跟踪调查,所得样本频率分布直方图如图,由图可知:一批电子元件中,寿命在100~300小时的电子元件的数量与寿命在300~600小时的电子元件的数量的比大约是()A.12B.13C.14D.16答案:由于已知的频率分布直方图中组距为100,寿命在100~300小时的电子元件对应的矩形的高分别为:12000,32000则寿命在100~300小时的电子元件的频率为:100?(12000+32000)=0.2寿命在300~600小时的电子元件对应的矩形的高分别为:1400,1250,32000则寿命在300~600小时子元件的频率为:100?(1400+1250+32000)=0.8则寿命在100~300小时的电子元件的数量与寿命在300~600小时的电子元件的数量的比大约是0.2:0.8=14故选C16.用反证法证明命题“三角形中最多只有一个内角是钝角”时,则假设的内容是()
A.三角形中有两个内角是钝角
B.三角形中有三个内角是钝角
C.三角形中至少有两个内角是钝角
D.三角形中没有一个内角是钝角答案:C17.根据下列条件,求圆的方程:
(1)过点A(1,1),B(-1,3)且面积最小;
(2)圆心在直线2x-y-7=0上且与y轴交于点A(0,-4),B(0,-2).答案:(1)过A、B两点且面积最小的圆就是以线段AB为直径的圆,∴圆心坐标为(0,2),半径r=12|AB|=12(-1+1)2+(1-3)2=12×8=2,∴所求圆的方程为x2+(y-2)2=2;(2)由圆与y轴交于点A(0,-4),B(0,-2)可知,圆心在直线y=-3上,由2x-y-7=0y=-3,解得x=2y=-3,∴圆心坐标为(2,-3),半径r=5,∴所求圆的方程为(x-2)2+(y+3)2=5.18.已知x与y之间的一组数据是()
x0123y2468则y与x的线性回归方程y=bx+a必过点()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,5)答案:根据所给的表格得到.x=0+1+2+34=1.5,.y=2+4+6+84=5,∴这组数据的样本中心点是(1.5,5)∵线性回归直线一定过样本中心点,∴y与x的线性回归方程y=bx+a必过点(1.5,5)故选D.19.①附中高一年级聪明的学生;
②直角坐标系中横、纵坐标相等的点;
③不小于3的正整数;
④3的近似值;
考察以上能组成一个集合的是______.答案:因为直角坐标系中横、纵坐标相等的点是确定的,所以②能构成集合;不小于3的正整数是确定的,所以③能构成集合;附中高一年级聪明的学生,不是确定的,原因是没法界定什么样的学生为聪明的,所以①不能构成集合;3的近似值没说明精确到哪一位,所以是不确定的,故④不能构成集合.20.两平行直线x+3y-5=0与x+3y-10=0的距离是______.答案:根据题意,得两平行直线x+3y-5=0与x+3y-10=0的距离为d=|-5+10|12+32=102故为:10221.电子跳蚤游戏盘是如图所示的△ABC,AB=8,AC=9,BC=10,如果跳蚤开始时在BC边的点P0处,BP0=4.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1=CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2=AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3=BP2;跳蚤按上述规则一直跳下去,第n次落点为Pn(n为正整数),则点P2010与C间的距离为______答案:∵由题意可以发现每边各有两点,其中BC边上P0,P6,P12…重合,P3,P9,P15…重合,AC边上P1,P7,P13…重合,P4,P10,P16…重合,AB边上P2,P8,P14…重合,P5,P11,P17…重合.发现规律2010为六的倍数所以与P0重合,∴与C点之间的距离为6故为:622.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是______.答案:由茎叶图可得甲组共有9个数据中位数为45乙组共9个数据中位数为46故为45、4623.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为______米.答案:如图建立直角坐标系,设抛物线方程为x2=my,将A(2,-2)代入x2=my,得m=-2∴x2=-2y,代入B(x0,-3)得x0=6,故水面宽为26m.故为:26.24.(选做题)圆内非直径的两条弦AB、CD相交于圆内一点P,已知PA=PB=4,PC=14PD,则CD=______.答案:连接AC、BD.∵∠A=∠D,∠C=∠B,∴△ACP∽△DBP,∴PAPD=PCPB,∴4PD=14PD4,∴PD2=64∴PD=8∴CD=PD+PC=8+2=10,故为:1025.当圆x=4cosθy=4sinθ上一点P的旋转角为θ=23π时,点P的坐标为______.答案:根据圆的参数方程的意义,当圆x=4cosθy=4sinθ上一点P的旋转角为θ=23π时,点P的坐标为(4cos2π3,4sin2π3),即(-2,23).故为:(-2,23).26.将(x+y+z)5展开合并同类项后共有______项,其中x3yz项的系数是______.答案:将(x+y+z)5展开合并同类项后,每一项都是m?xa?yb?zc
的形式,且a+b+c=5,其中,m是实数,a、b、c∈N,构造8个完全一样的小球模型,分成3组,每组至少一个,共有分法C27种,每一组中都去掉一个小球的数目分别作为(x+y+z)5的展开式中每一项中x,y,z各字母的次数,小球分组模型与各项的次数是一一对应的.故将(x+y+z)5展开合并同类项后共有C27=21项.把(x+y+z)5的展开式看成5个因式(x+y+z)的乘积形式.从中任意选3个因式,这3个因式都取x,另外的2个因式分别取y、z,相乘即得含x3yz项,故含x3yz项的系数为C35=20,故为21;20.27.(Ⅰ)解关于x的不等式(lgx)2-lgx-2>0;
(Ⅱ)若不等式(lgx)2-(2+m)lgx+m-1>0对于|m|≤1恒成立,求x的取值范围.答案:(Ⅰ)∵(lgx)2-lgx-2>0,∴(lgx+1)(lgx-2)>0.∴lgx<-1或lgx>2.∴0<x<110或x>102.(Ⅱ)设y=lgx,则原不等式可化为y2-(2+m)y+m-1>0,∴y2-2y-my+m-1>0.∴(1-y)m+(y2-2y-1)>0.当y=1时,不等式不成立.设f(m)=(1-y)m+(y2-2y-1),则f(x)是m的一次函数,且一次函数为单调函数.当-1≤m≤1时,若要f(m)>0⇔f(1)>0f(-1)>0.⇔y2-2y-1+1-y>0y2-2y-1+y-1>0.⇔y2-3y>0y2-y-2>0.⇔y<0或y>3y<-1或y>2.则y<-1或y>3.∴lgx<-1或lgx>3.∴0<x<110或x>103.∴x的取值范围是(0,110)∪(103,+∞).28.设a、b∈R+且a+b=3,求证1+a+1+b≤10.答案:证明:证法一:(综合法)∵(1+a+1+b)2=2+a+b+2(1+a)?(1+b)≤5+(1+a+1+b)=10∴1+a+1+b≤10证法二:(分析法)∵a、b∈R+且a+b=3,∴欲证1+a+1+b≤10只需证(1+a+1+b)2≤10即证2+a+b+2(1+a)?(1+b)≤10即证2(1+a)?(1+b)≤5只需证4(1+a)?(1+b)≤25只需证4(1+a)?(1+b)≤25即证4(1+a+b+ab)≤25只需证4ab≤9即证ab≤94∵ab≤(a+b2)2=(32)2=94成立∴1+a+1+b≤10成立29.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个球,则其中含红球个数的数学期望是
______.答案:设含红球个数为ξ,ξ的可能取值是0、1、2,当ξ=0时,表示从中取出2个球,其中不含红球,当ξ=1时,表示从中取出2个球,其中1个红球,1个黄球,当ξ=2时,表示从中取出2个球,其中2个红球,∴P(ξ=0)=C22C25=0.1,P(ξ=1)=C12C13C25=0.6P(ξ=2)=C23C25=0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故为:1.2.30.下列对一组数据的分析,不正确的说法是()
A.数据极差越小,样本数据分布越集中、稳定
B.数据平均数越小,样本数据分布越集中、稳定
C.数据标准差越小,样本数据分布越集中、稳定
D.数据方差越小,样本数据分布越集中、稳定答案:B31.由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的自然数有______.答案:由题意,一位数有:1,2,3;两位数有:12,21,23,32,13,31;三位数有:123,132,213,231,321,312故为:1,2,3,12,13,23,21,31,32,123,132,213,231,321,312.32.设a=lg2+lg5,b=ex(x<0),则a与b的大小关系是?答案:a═lg2+lg5=lg10=1又b=ex,由指数函数的性质知,当x<0时,0<b<1∴a>b33.已知图形F上的点A按向量平移前后的坐标分别是和,若B()是图形F上的又一点,则在F按向量平移后得到的图形F,上B,的坐标是(
)A.B.C.D.答案:选D解析:设向量,则平移公式为依题意有∴平移公式为将B点坐标代入可得B,点的坐标为.所以选D.34.下列特殊命题中假命题的个数是()
①有的实数是无限不循环小数;
②有些三角形不是等腰三角形;
③有的菱形是正方形.
A.0
B.1
C.2
D.3答案:B35.已知2a=3b=6c则有()
A.∈(2,3)
B.∈(3,4)
C.∈(4,5)
D.∈(5,6)答案:C36.不等式的解集是(
)
A.
B.
C.
D.答案:D37.如图,设P,Q为△ABC内的两点,且AP=25AB+15AC,AQ=23AB+14AC,则△ABP的面积与△ABQ的面积之比为______.答案:设AM=25AB,AN=15AC则AP=AM+AN由平行四边形法则知NP∥AB
所以△ABP的面积△ABC的面积=|AN||AC|=15同理△ABQ的面积△ABC的面积=14故△ABP的面积△ABQ的面积=45故为:4538.双曲线的渐进线方程是3x±4y=0,则双曲线的离心率等于______.答案:由题意可得,当焦点在x轴上时,ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.当焦点在y轴上时,ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故为:53
或54.39.设集合A={1,2,4},B={2,6},则A∪B等于()A.{2}B.{1,2,4,6}C.{1,2,4}D.{2,6}答案:∵集合A={1,2,4},B={2,6},∴A∪B={1,2,4}∪{2,6}={1,2,4,6},故选B.40.设集合A={x|},则A∩B等于(
)
A.
B.
C.
D.答案:B41.一个多面体的三视图分别是正方形、等腰三角形和矩形,其尺寸如图,则该多面体的体积为()A.48cm3B.24cm3C.32cm3D.28cm3答案:由三视图可知该几何体是平放的直三棱柱,高为4,底面三角形一边长为6,此边上的高为4体积V=Sh=12×6×4×4=48cm3故选A42.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).试证:数列{xn}或者对任意自然数n都满足xn<xn+1,或者对任意自然数n都满足xn>xn+1.答案:证:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由数列{xn}的定义可知xn>0,(n=1,2,…)所以,xn+1-xn与1-xn2的符号相同.①假定x1<1,我们用数学归纳法证明1-xn2>0(n∈N)显然,n=1时,1-x12>0设n=k时1-xk2>0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,对一切自然数n都有1-xn2>0,从而对一切自然数n都有xn<xn+1②若x1>1,当n=1时,1-x12<0;设n=k时1-xk2<0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,对一切自然数n都有1-xn2<0,从而对一切自然数n都有xn>xn+143.若方程sin2x+4sinx+m=0有实数解,则m的取值范围是(
)
A、R
B、(-∞,-5]∪[3,+∞)
C、(-5,3)
D、[-5,3]答案:D44.从某校随机抽取了100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图),由图中数据可知m=______,所抽取的学生中体重在45~50kg的人数是______.答案:由频率分步直方图知,(0.02+m+0.06+0.02)×5=1,∴m=0.1,∴所抽取的体重在45~50kg的人数是0.1×5×100=50人,故为:0.1;5045.若两条平行线L1:x-y+1=0,与L2:3x+ay-c=0
(c>0)之间的距离为,则等于()
A.-2
B.-6
C..2
D.0答案:A46.已知抛物线的顶点在原点,焦点在x轴的正半轴上,F为焦点,A,B,C为抛物线上的三点,且满足FA+FB+FC=0,|FA|+|FB|+|FC|=6,则抛物线的方程为______.答案:设向量FA,FB,FC的坐标分别为(x1,y1)(x2,y2)(x3,y3)由FA+FB+FC=0得x1+x2+x3=0∵XA=x1+p2,同理XB=x2+p2,XC=x3+p2∴|FA|=x1+p2+p2=x1+p,同理有|FB|=x2+p2+p2=x2+p,|FC|=x3+p2+p2=x3+p,又|FA|+|FB|+|FC|=6,∴x1+x2+x3+3p=6,∴p=2,∴抛物线方程为y2=4x.故为:y2=4x.47.若点A(1,2,3),B(-3,2,7),且AC+BC=0,则点C的坐标为______.答案:设C(x,y,z),则AC+BC=(2x+2,2y-4,2z-10)=0,∴x=-1,y=2,z=5.故为(-1,2,5)48.直线x3+y4=1与x,y轴所围成的三角形的周长等于()A.6B.12C.24D.60答案:直线x3+y4=1与两坐标轴交于A(3,0),B(0,4),∴AB=5,∴△AOB的周长为:OA+OB+AB=3+4+5=12,故选B.49.已知=1-ni,其中m,n是实数,i是虚数单位,则m+ni=(
)
A.1+2i
B.1-2i
C.2+i
D.2-i答案:C50.设空间两个不同的单位向量
a=(x1,y1,0),
b=(x2,y2,0)与向量
c=(1,1,1)的夹角都等于45°.
(1)求x1+y1和x1y1的值;
(2)求<
a,
b>的大小.答案:(1)∵单位向量a=(x1,y1,0)与向量c=(1,1,1)的夹角等于45°∴|a|=x21+y21=1,cos45°=a?
c|a|?
|c|=13(x1+y1)=22∴x1+y1=62,x1?y1=-14(2)同理可知x2+y2=22,x2?y2=-14∴x1?x2=-14,y1?y2=-14cos<a,b>=a?b|a|?|b|=x1?x2+y1?y2=-12∴<a,b>=120°第2卷一.综合题(共50题)1.“所有9的倍数(M)都是3的倍数(P),某奇数(S)是9的倍数(M),故此奇数(S)是3的倍数(P)”,上述推理是()
A.小前提错
B.结论错
C.正确的
D.大前提错答案:C2.“sinx=siny”是“x=y”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案:∵“sinx=siny”不能推出“x=y”,例如sin30°=sin390°,但30°≠390°,即充分性不成立;反过来,若“x=y”,一定有“sinx=siny”,即必要性成立;∴“sinx=siny”是“x=y”的必要不充分条件.故选C.3.参数方程(θ为参数)化为普通方程是()
A.2x-y+4=0
B.2x+y-4=0
C.2x-y+4=0,x∈[2,3]
D.2x+y-4=0,x∈[2,3]答案:D4.从四个公司按分层抽样的方法抽取职工参加知识竞赛,其中甲公司共有职工96人.若从甲、乙、丙、丁四个公司抽取的职工人数分别为12,21,25,43,则这四个公司的总人数为()
A.101
B.808
C.1212
D.2012答案:B5.已知椭圆C的左右焦点坐标分别是(-2,0),(2,0),离心率22,直线y=x-1与椭圆C交于不同的两点A,B.
(1)求椭圆C的方程;
(2)求弦AB的长度.答案:(本小题满分13分)(1)依题意可设椭圆C的方程为x2a2+y2b2=1(a>b>0)…(1分)则c=2e=ca=22,解得a=22c=2…(3分)∴b2=a2-c2=8-4=4…(5分)∴椭圆C的方程为x28+y24=1…(6分)(2)设A(x1,y1),B(x2,y2)…(7分)联立方程x28+y24=1y=x-1,消去y,并整理得:3x2-4x-6=0…(9分)∴x1+x2=43x1•x2=-2…(10分)∴|AB|=1+12|x2-x1|=2[(x1+x2)2-4x1x2]
=2[(43)2-4×(-2)]=4113…(12分)∴|AB|=4113…(13分)6.质地均匀的正四面体玩具的4个面上分别刻着数字1,2,3,4,将4个这样的玩具同时抛掷于桌面上.
(1)求与桌面接触的4个面上的4个数的乘积不能被4整除的概率;
(2)设ξ为与桌面接触的4个面上数字中偶数的个数,求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有两种情形;①4个数均为奇数,概率为P1=(12)4=116②4个数中有3个奇数,另一个为2,概率为P2=C34(12)3?14=18这两种情况是互斥的,故所求的概率为P=116+18=316(2)ξ为与桌面接触的4个面上数字中偶数的个数,由题意知ξ的可能取值是0,1,2,3,4,根据符合二项分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列为∵ξ服从二项分布B(4,12),∴Eξ=4×12=2.7.(本小题满分10分)选修4-1:几何证明选讲
如图,的角平分线的延长线交它的外接圆于点.
(Ⅰ)证明:;
(Ⅱ)若的面积,求的大小.答案:(Ⅰ)证明见解析(Ⅱ)90°解析:本题主要考查平面几何中与圆有关的定理及性质的应用、三角形相似及性质的应用.证明:(Ⅰ)由已知条件,可得∠BAE=∠CAD.因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(Ⅱ)因为△ABE∽△ADC,所以,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.【点评】在圆的有关问题中经常要用到弦切角定理、圆周角定理、相交弦定理等结论,解题时要注意根据已知条件进行灵活的选择,同时三角形相似是证明一些与比例有关问题的的最好的方法.8.平面上一动点到两定点距离差为常数2a(a>0)的轨迹是否是双曲线,若a>c是否为双曲线?答案:由题意,设两定点间的距离为2c,则2a<2c时,轨迹为双曲线的一支2a=2c时,轨迹为一条射线2a>2c时,无轨迹.9.已知下列命题(其中a,b为直线,α为平面):
①若一条直线垂直于一个平面内无数条直线,则这条直线与这个平面垂直;
②若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面;
③若a∥α,b⊥α,则a⊥b;
④若a⊥b,则过b有且只有一个平面与a垂直.
上述四个命题中,真命题是()A.①,②B.②,③C.②,④D.③,④答案:①平面内无数条直线均为平行线时,不能得出直线与这个平面垂直,将“无数条”改为“所有”才正确;故①错误;②垂直于这条直线的直线与这个平面可以是任何的位置关系,有可能是平行、相交、线在面内,故②错误.③若a∥α,b⊥α,则必有a⊥b,正确;④若a⊥b,则过b有且只有一个平面与a垂直,显然正确.故选D.10.已知F1,F2为椭圆x2a2+y2b2=1(a>b>0)的两个焦点,过F2作椭圆的弦AB,若△AF1B的周长为16,椭圆的离心率为e=32,则椭圆的方程为______.答案:根据椭圆的定义,△AF1B的周长为16可知,4a=16,∴a=4,∵e=32,∴c=23,∴b=2,∴椭圆的方程为x216+y24=1,故为x216+y24=111.若a=(1,2,-2),b=(1,0,2),则(a-b)•(a+2b)=______.答案:∵a=(1,2,-2),b=(1,0,2),∴a-b=(0,2,-4),a+2b=(3,2,2).∴(a-b)•(a+2b)=0×3+2×2-4×2=-4.故为-4.12.(1)在数轴上求一点的坐标,使它到点A(9)与到点B(-15)的距离相等;
(2)在数轴上求一点的坐标,使它到点A(3)的距离是它到点B(-9)的距离的2倍.答案:(1)设该点为M(x),根据题意,得A、M两点间的距离为d(A,M)=|x-9|,B、M两点间的距离为d(M,B)=|-15-x|,结合题意,可得|x-9|=|-15-x|,∴x-9=15+x或x-9=-15-x,解之得x=-3,得M的坐标为-3故所求点的坐标为-3.(2)设该点为N(x'),则A、N两点间的距离为d(A,N)=|x'-3|,B、N两点间的距离为d(N,B)=|-9-x'|,根据题意有|x'-3|=2|9+x'|,∴x'-3=18+2x'或x'-3=-18-2x',解之得x'=-21,或x'=-5.故所求点的坐标是-21或-5.13.斜二测画法的规则是:
(1)在已知图形中建立直角坐标系xoy,画直观图
时,它们分别对应x′和y′轴,两轴交于点o′,使∠x′o′y′=______,它们确定的平面表示水平平面;
(2)
已知图形中平行于x轴或y轴的线段,在直观图中分别画成
______;
(3)已知图形中平行于x轴的线段的长度,在直观图中
______;平行于y轴的线段,在直观图中
______.答案:按照斜二测画法的规则填空故为:(1)45°或135°;(2)平行于x′轴和y′轴;(3)长度不变;长度减半14.如图的矩形,长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为
______.答案:根据题意:黄豆落在阴影部分的概率是138300矩形的面积为10,设阴影部分的面积为s则有s10=138300∴s=235故为:23515.点P(x,y)是椭圆2x2+3y2=12上的一个动点,则x+2y的最大值为______.答案:把椭圆2x2+3y2=12化为标准方程,得x26+y24=1,∴这个椭圆的参数方程为:x=6cosθy=2sinθ,(θ为参数)∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故为:22.16.已知方程(1+k)x2-(1-k)y2=1表示焦点在x轴上的双曲线,则k的取值范围为(
)
A.-1<k<1
B.k>1
C.k<-1
D.k>1或k<-1答案:A17.如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且
DF=CF=2,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为.答案:设AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=7218.已知a=(1,-2,1),a+b=(3,-6,3),则b等于()A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)答案:∵a+b=(3,-6,3),∴b=a+b-a=(3,-6,3)-(1,-2,1)=(2,-4,2).故选A.19.如图所示的程序框图,运行相应的程序,若输出S的值为254,则判断框①中应填入的条件是()A.n≤5B.n≤6C.n≤7D.n≤8答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件S=2+22+23+…+2n=126时S的值∵2+22+23+…+27=254,故最后一次进行循环时n的值为7,故判断框中的条件应为n≤7.故选C.20.已知△ABC是边长为4的正三角形,D、P是△ABC内部两点,且满足AD=14(AB+AC),AP=AD+18BC,则△APD的面积为______.答案:取BC的中点E,连接AE,根据△ABC是边长为4的正三角形∴AE⊥BC,AE=12(AB+AC)而AD=14(AB+AC),则点D为AE的中点,AD=3取AF=18BC,以AD,AF为边作平行四边形,可知AP=AD+18BC=AD+AF而△APD为直角三角形,AF=12∴△APD的面积为12×12×3=34故为:3421.如图程序输出的结果是()
a=3,
b=4,
a=b,
b=a,
PRINTa,b
END
A.3,4
B.4,4
C.3,3
D.4,3答案:B22.一元二次不等式ax2+bx+c≤0的解集是全体实数所满足的条件是(
)
A.
B.
C.
D.答案:D23.已知两个非空集合A、B满足A∪B={1,2,3},则符合条件的有序集合对(A,B)个数是()A.6B.8C.25D.27答案:按集合A分类讨论若A={1,2,3},则B是A的子集即可满足题意,故B有7种情况,即有序集合对(A,B)个数为7若A={1,2,}或{1,3}或{2,3}时,集合B中至少有一个元素,故每种情况下,B都有4种情况,故有序集合对(A,B)个数为4×3=12若A={1}或{3}或{2}时集合中至少有二个元素,故每种情况下,B都有2种情况,故有序集合对(A,B)个数为2×3=6综上,符合条件的有序集合对(A,B)个数是7+12+6=25故选C24.若a,b∈{2,3,4,5,7},则可以构成不同的椭圆的个数为()
A.10
B.20
C.5
D.15答案:B25.在平面直角坐标系xOy中,设F1(-4,0),F2(4,0),方程x225+y29=1的曲线为C,关于曲线C有下列命题:
①曲线C是以F1、F2为焦点的椭圆的一部分;
②曲线C关于x轴、y轴、坐标原点O对称;
③若P是上任意一点,则PF1+PF2≤10;
④若P是上任意一点,则PF1+PF2≥10;
⑤曲线C围成图形的面积为30.
其中真命题的序号是______.答案:∵x225+y29=1即为|x|5+|y|3=1表示四条线段,如图故①④错,②③对对于⑤,图形的面积为3×52×4=30,故⑤对.故为②③⑤26.已知圆O的两弦AB和CD延长相交于E,过E点引EF∥CB交AD的延长线于F,过F点作圆O的切线FG,求证:EF=FG.答案:证明:∵FG为⊙O的切线,而FDA为⊙O的割线,∴FG2=FD?FA①又∵EF∥CB,∴∠1=∠2.而∠2=∠3,∴∠1=∠3,∠EFD=∠AFE为公共角∴△EFD∽△AFE,FDEF=EFFA,即EF2=FD?FA②由①,②可得EF2=FG2∴EF=FG.27.(参数方程与极坐标)已知F是曲线x=2cosθy=1+cos2θ(θ∈R)的焦点,M(12,0),则|MF|的值是
______.答案:y=1+cos2θ=2cos2θ=2•(x2)2化简得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故为:2228.若x,y∈R,x>0,y>0,且x+2y=1,则xy的最大值为______.答案:∵x,y∈R,x>0,y>0,且x+2y=1,∴1=x+2y≥2x?2y,∴22×xy≤1,∴xy≤
122=24,所以xy≤18.当且仅当x=2yx+2y=1时,即x=12,y=14时,取等号.故为:18.29.
008年北京成功举办了第29届奥运会,中国取得了51金、21银、28铜的骄人成绩.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷赛前准备用12000元预定15张下表中球类比赛的门票:
比赛项目
票价(元/场)
篮球
1000
足球
800
乒乓球
500
若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票数与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,则可以预订男篮门票数为
A.2
B.3
C.4
D.5
答案:D30.已知曲线C1,C2的极坐标方程分别为ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<π2),则曲线C1与C2交点的极坐标为______.答案:我们通过联立解方程组ρcosθ=3ρ=4cosθ(ρ≥0,0≤θ<π2)解得ρ=23θ=π6,即两曲线的交点为(23,π6).故填:(23,π6).31.在下列四个命题中,正确的共有()
①坐标平面内的任何一条直线均有倾斜角和斜率;
②直线的倾斜角的取值范围是[0,π];
③若一条直线的斜率为tanα,则此直线的倾斜角为α;
④若一条直线的倾斜角为α,则此直线的斜率为tanα.
A.0个
B.1个
C.2个
D.3个答案:A32.化简下列各式:
(1)AB+DF+CD+BC+FA=______;
(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故为:(1)0;(2)AC33.已知向量a=(0,-1,1),b=(4,1,0),|λa+b|=57且λ>0,则λ=______.答案:∵λa+b=λ(0,-1,1)+(4,1,0)=(4,1-λ,λ),|λa+b|=57,∴42+(1-λ)2+λ2=57,化为λ2-λ-20=0,又λ>0,解得λ=5.故为5.34.给出下列说法:①球的半径是球面上任意一点与球心的连线段;②球的直径是球面上任意两点的连线段;③用一个平面截一个球面,得到的是一个圆;④球常用表示球心的字母表示.其中说法正确的是______.答案:根据球的定义直接判断①正确;②错误;;③用一个平面截一个球面,得到的是一个圆;可以是小圆,也可能是大圆,正确;④球常用表示球心的字母表示.满足球的定义正确;故为:①③④35.已知曲线C上的动点P(x,y)满足到点F(0,1)的距离比到直线l:y=-2的距离小1.
(Ⅰ)求曲线C的方程;
(Ⅱ)动点E在直线l上,过点E分别作曲线C的切线EA,EB,切点为A、B.
(ⅰ)求证:直线AB恒过一定点,并求出该定点的坐标;
(ⅱ)在直线l上是否存在一点E,使得△ABM为等边三角形(M点也在直线l上)?若存在,求出点E坐标,若不存在,请说明理由.答案:(Ⅰ)曲线C的方程x2=4y(5分)(Ⅱ)(ⅰ)设E(a,-2),A(x1,x214),B(x2,x224),∵y=x24∴y′=12x过点A的抛物线切线方程为y-x214=12x1(x-x1),∵切线过E点,∴-2-x214=12x1(a-x1),整理得:x12-2ax1-8=0同理可得:x22-2ax2-8=0,∴x1,x2是方程x2-2ax-8=0的两根,∴x1+x2=2a,x1•x2=-8可得AB中点为(a,a2+42)又kAB=y1-y2x1-x2=x214-x224x1-x2=x1+x24=a2,∴直线AB的方程为y-(a22+2)=a2(x-a)即y=a2x+2,∴AB过定点(0,2)(10分)(ⅱ)由(ⅰ)知AB中点N(a,a2+42),直线AB的方程为y=a2x+2当a≠0时,则AB的中垂线方程为y-a2+42=-2a(x-a),∴AB的中垂线与直线y=-2的交点M(a3+12a4,-2)∴|MN|2=(a3+12a4-a)2+(-2-a2+42)2=116(a2+8)2(a2+4)∵|AB|=1+a24(x1+x2)2-4x1x2=(a2+4)(a2+8)若△ABM为等边三角形,则|MN|=32|AB|,∴116(a2+8)2(a2+4)=34(a2+4)(a2+8),解得a2=4,∴a=±2,此时E(±2,-2),当a=0时,经检验不存在满足条件的点E综上可得:满足条件的点E存在,坐标为E(±2,-2).(15分)36.如图,O是正方形ABCD对角线的交点,四边形OAED,OCFB都是正方形,在图中所示的向量中:
(1)与AO相等的向量有
______;
(2)写出与AO共线的向量有
______;
(3)写出与AO的模相等的向量有
______;
(4)向量AO与CO是否相等?答
______.答案:(1)与AO相等的向量有BF(2)与AO共线的向量有DE,CO,BF(3)与AO的模相等的向量有DE,
DO,AE,CO,CF,BF,BO(4)模相等,方向相反故AO与CO不相等37.3科老师都布置了作业,在同一时刻4名学生都做作业的可能情况有()
A.43种
B.4×3×2种
C.34种
D.1×2×3种答案:C38.已知二阶矩阵A=2ab0属于特征值-1的一个特征向量为1-3,求矩阵A的逆矩阵.答案:由矩阵A属于特征值-1的一个特征向量为α1=1-3,可得2ab01-3=-1-3,得2-3a=-1b=3即a=1,b=3;
…(3分)解得A=2130,…(8分)∴A逆矩阵是A-1=dad-bc-bad-bc-cad-bcaad-bc=0131-23.39.若曲线x24+k+y21-k=1表示双曲线,则k的取值范围是
______.答案:要使方程为双曲线方程需(4+k)(1-k)<0,即(k-1)(k+4)>0,解得k>1或k<-4故为(-∞,-4)∪(1,+∞)40.已知向量a=(-2,1),b=(-3,-1),若单位向量c满足c⊥(a+b),则c=______.答案:设c=(x,y),∵向量a=(-2,1),b=(-3,-1),单位向量c满足c⊥(a+b),∴c•a+c•b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是单位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故为:(0,1)或(0,-1).41.电视机的使用寿命显像管开关的次数有关.某品牌电视机的显像管开关了10000次还能继续使用的概率是0.96,开关了15000次后还能继续使用的概率是0.80,则已经开关了10000次的电视机显像管还能继续使用到15000次的概率是______.答案:记“开关了10000次还能继续使用”为事件A,记“开关了15000次后还能继续使用”为事件B,根据题意,易得P(A)=0.96,P(B)=0.80,则P(A∩B)=0.80,由条件概率的计算方法,可得P=P(A∩B)P(A)=0.800.96=56;故为56.42.己知集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N*,x∈A,y∈B,使B中元素y=3x+1和A中的元素x对应,则a=______,k=______.答案:若x∈A,y∈B,使B中元素y=3x+1和A中的元素x对应,则当x=1时,y=4;当x=2时,y=7;当x=3时,y=10;当x=k时,y=3k+1;又由a∈N*,∴a4≠10,则a2+3a=10,a4=3k+1解得a=2,k=5故为:2,543.俊、杰兄弟俩分别在P、Q两篮球队效力,P队、Q队分别有14和15名球员,且每个队员在各自队中被安排首发上场的机会是均等的,则P、Q两队交战时,俊、杰兄弟俩同为首发上场交战的概率是(首发上场各队五名队员)(
)A.B.C.D.答案:B解析:解:P(俊首发)=
P(杰首发)==P(俊、杰同首发)=
选B评析:考察考生等可能事件的概率与相互独立事件的概率问题。44.已知0<α<π2,方程x2sinα+y2cosα=1表示焦点在y轴上的椭圆,则α的取值范围______.答案:方程x2sinα+y2cosα=1化成标准形式得:x21sinα+y21cosα=1.∵方程表示焦点在y轴上的椭圆,∴1cosα>1sinα>0,解之得sinα>cosα>0∵0<α<π2,∴π4<α<π2,即α的取值范围是(π4,π2)故为:(π4,π2)45.给出以下命题:(1)若非零向量a与b互为负向量,则a∥b;(2)|a|=0是a=0的充要条件;(3)若|a|=|b|,则a=±b;(4)物理学中的作用力和反作用力互为负向量.其中为真命题的是______.答案:(1)若非零向量a与b互为负向量,根据相反向量的定义可知a∥b,故正确;(2)|a|=0则a=0,a=0则|a|=0,故|a|=0是a=0的充要条件,故正确;(3)若|a|=|b|,则两向量模等,方向任意,故不正确;(4)物理学中的作用力和反作用力大小相等,方向相反,故互为负向量,故正确故为:(1)(2)(4)46.已知f(x+1)=x2+2x+3,则f(2)的值为______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故为:6.47.以下四组向量中,互相平行的是.()
(1)=(1,2,1),=(1,-2,3);
(2)=(8,4,-6),=(4,2,-3);
(3)=(0,1,-1),=(0,-3,3);
(4)=(-3,2,0),=(4,-3,3).
A.(1)(2)
B.(2)(3)
C.(2)(4)
D.(1)(3)答案:B48.已知F1、F2为椭圆x225+y29=1的两个焦点,过F1的直线交椭圆于A、B两点.若|F2A|+|F2B|=12,则|AB|=______.答案:由椭圆的定义得|AF1|+|AF2|=10|BF1|+|BF2|=10两式相加得|AB|+|AF2|+|BF2|=20,即|AB|+12=20,∴|AB|=8.故:849.直线ax+by=1与圆x2+y2=1有两不同交点,则点P(a,b)与圆的位置关系为______.答案:圆心到直线ax+by=1的距离,1a2+b2,∵直线ax+by=1与圆x2+y2=1有两不同交点,∴1a2+b2<1即a2+b2>1.故为:点在圆外.50.点O是四边形ABCD内一点,满足OA+OB+OC=0,若AB+AD+DC=λAO,则λ=______.答案:设BC中点为E,连接OE.则OB+OC=2OE,又有已知OB+OC=AO,所以AO=2OE,A,O,E三点都在BC边的中线上,且|AO|=2|OE|,所以O为△ABC重心.AB+AD+DC=
AB+(AD+DC)=AB+AC=2AE=2×32AO=3AO,∴λ=3故为:3.第3卷一.综合题(共50题)1.已知双曲线x2-y23=1,过P(2,1)点作一直线交双曲线于A、B两点,并使P为AB的中点,则直线AB的斜率为______.答案:设A(x1,y1)、B(x2,y2),代入双曲线方程x2-y23=1相减得直线AB的斜率kAB=y1-y2x1-x2=3(x1+x2)y1+y2=3×x1+x22y1+y22=3×21=6.故为:62.若根据10名儿童的年龄
x(岁)和体重
y(㎏)数据用最小二乘法得到用年龄预报体重的回归方程是
y=2x+7,已知这10名儿童的年龄分别是
2、3、3、5、2、6、7、3、4、5,则这10名儿童的平均体重是()
A.17㎏
B.16㎏
C.15㎏
D.14㎏答案:C3.若平面α与β的法向量分别是a=(1,0,-2),b=(-1,0,2),则平面α与β的位置关系是()A.平行B.垂直C.相交不垂直D.无法判断答案:∵a=(1,0,-2),b=(-1,0,2),∴a+b=(1-1,0+0,-2+2)=(0,0,0),即a+b=0由此可得a∥b∵a、b分别是平面α与β的法向量∴平面α与β的法向量平行,可得平面α与β互相平行.4.若O(0,0),A(1,2)且OA′=2OA.则A′点坐标为()A.(1,4)B.(2,2)C.(2,4)D.(4,2)答案:设A′(x,y),OA′=(x,y),OA=(1,2),∴(x,y)=2(1,2),故选C.5.若F1、F2是椭圆x24+y2=1的左、右两个焦点,M是椭圆上的动点,则1|MF1|+1|MF2|的最小值为______.答案:∵F1、F2是椭圆x24+y2=1的左、右两个焦点,M是椭圆上的动点,∴1|MF1|+1|MF2|=|MF1|+|MF2||MF1|?|MF2|=4|MF1|?|MF2|,∵|MF1|?|MF2|的最大值为a2=4,∴1|MF1|+1|MF2|的最小值=44=1.故为:1.6.若A为m×n阶矩阵,AB=C,则B的阶数可以是下列中的______.
①m×m,②m×n,③n×m,④n×n.答案:两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数相等时,才能作乘法.矩阵A是n列矩阵,故矩阵B是n行的矩阵则B的阶数可以是③n×m,④n×n故为:③④7.如图,已知OA、OB是⊙O的半径,且OA⊥OB,P是线段OA上一点,直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E,求证:∠OBP+∠AQE=45°.答案:证明:连接AB,则∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°8.四名志愿者和两名运动员排成一排照相,要求两名运动员必须站在一起,则不同的排列方法为()A.A44A22B.A55A22C.A55D.A66A22答案:根据题意,要求两名运动员站在一起,所以使用捆绑法,两名运动员站在一起,有A22种情况,将其当做一个元素,与其他四名志愿者全排列,有A55种情况,结合分步计数原理,其不同的排列方法为A55A22种,故选B.9.甲、乙两人参加一次考试,已知在备选的10道试题中,甲能答对其中6题,乙能答对其中8题.若规定每次考试分别都从这10题中随机抽出3题进行测试,至少答对2题算合格.
(1)分别求甲、乙两人考试合格的概率;
(2)求甲、乙两人至少有一人合格的概率.答案:(1)(2)解析:(1)设甲、乙考试合格分别为事件A、B,甲考试合格的概率为P(A)=,乙考试合格的概率为P(B)=.(2)A与B相互独立,且P(A)=,P(B)=,则甲、乙两人至少有一人合格的概率为P(AB++A)=×+×+×=.10.已知x1,x2,…,xn都是正数,且x1+x2+…+xn=1,求证:
++…+≥n2.答案:证明略解析:证明
++…+=(x1+x2+…+xn)(
++…+)≥=n2.11.现有以下两项调查:①某校高二年级共有15个班,现从中选择2个班,检查其清洁卫生状况;②某市有大型、中型与小型的商店共1500家,三者数量之比为1:5:9.为了调查全市商店每日零售额情况,抽取其中15家进行调查.完成①、②这两项调查宜采用的抽样方法依次是()A.简单随机抽样法,分层抽样法B.系统抽样法,简单随机抽样法C.分层抽样法,系统抽样法D.系统抽样法,分层抽样法答案:从15个班中选择2个班,检查其清洁卫生状况;总体个数不多,而且差异不大,故可采用简单随机抽样的方法,1500家大型、中型与小型的商店的每日零售额存在较大差异,故可采用分层抽样的方法故完成①、②这两项调查宜采用的抽样方法依次是简单随机抽样法,分层抽样法故选A12.执行如图所示的程序框图,输出的M的值为()
A.17
B.53
C.161
D.485
答案:C13.已知|a|<1,|b|<1,求证:<1.答案:证明略解析:∵<1<1a2+b2+2ab<1+2ab+a2b2a2b2-a2-b2+1>0
(a2-1)(b2-1)>0又|a|<1,|b|<1,∴(a2-1)(b2-1)>0.∴原不等式成立.14.已知,向量与向量的夹角是,则x的值为()
A.±3
B.±
C.±9
D.3答案:D15.某学校高一年级男生人数占该年级学生人数的40%,在一次考试中,男,女平均分数分别为75、80,则这次考试该年级学生平均分数为______.答案:设该班男生有x人,女生有y人,这次考试该年级学生平均分数为a.根据题意可知:75x+80y=(x+y)×a,且xx+y=40%.所以a=78,则这次考试该年级学生平均分数为78.故为:78.16.设b是a的相反向量,则下列说法错误的是()
A.a与b的长度必相等
B.a与b的模一定相等
C.a与b一定不相等
D.a是b的相反向量答案:C17.集合M={(x,y)|xy≤0,x,y∈R}的意义是()A.第二象限内的点集B.第四象限内的点集C.第二、四象限内的点集D.不在第一、三象限内的点的集合答案:∵xy≤0,∴xy<0或xy=0当xy<0时,则有x<0y>0或x>0y<0,点(x,y)在二、四象限,当xy=0时,则有x=0或y=0,点(x,y)在坐标轴上,故选D.18.“因为对数函数y=logax是增函数(大前提),而y=logx是对数函数(小前提),所以y=logx是增函数(结论).”上面推理的错误是()
A.大前提错导致结论错
B.小前提错导致结论错
C.推理形式错导致结论错
D.大前提和小前提都错导致结论错答案:A19.设双曲线的渐近线为:y=±32x,则双曲线的离心率为______.答案:由题意ba=32或ab=32,∴e=ca=132或133,故为132,133.20.某教师出了一份三道题的测试卷,每道题1分,全班得3分、2分、1分和0分的学生所占比例分别为30%、50%、10%和10%,则全班学生的平均分为______分.答案:∵全班得3分、2分、1分和0分的学生所占比例分别为30%、50%、10%和10%,∴全班的平均分是3×30%+2×50%+1×10%+0×10%=2,故为:221.某个几何体的三视图如图所示,则该几何体的体积是()A.23B.3C.334D.332答案:由三视图可知该几何体是直三棱柱,高为1,底面三角形一边长为2,此边上的高为3,所以V=Sh=12×2×3×1=3故选B.22.设函数f(x)=ax(a>0,a≠1),如果f(x1+x2+…+x2009)=8,那么f(2x1)×f(2x2)×…×f(2x2009)的值等于()A.32B.64C.16D.8答案:f(x1+x2+…+x2009)=8可得ax1+x2+…+x2009=8f(2x1)×f(2x2)×…×f(2x2009)=a2(x1+x2+…+x2009)=82=64故选B.23.设A(3,3,1),B(1,0,5),C(0,1,0),则AB的中点M到点C的距离为
______.答案:M为AB的中点设为(x,y,z),∴x=3+12=2,y=32,z=1+52=3,∴M(2,32,3),∵C(0,1,0),∴MC=22+(32-1)
2
+33=532,故为:532.24.已知A(-4,6,-1),B(4,3,2),则下列各向量中是平面AOB(O是坐标原点)的一个法向量的是()A.(0,1,6)B.(-1,2,-1)C.(-15,4,36)D.(15,4,-36)答案:设平面AOB(O是坐标原点)的一个法向量是u=(x,y,z)则u•OA=0u•OB=0,即-4x+6y-z=04x+3y+2z=0,令x=-1,解得x=-1y=2z=-1,故u=(-1,2,-1),故选B.25.北京期货商会组织结构设置如下:
(1)会员代表大会下设监事会、会长办公会,而会员代表大会于会长办公会共辖理事会;
(2)会长办公会设会长,会长管理秘书长;
(3)秘书长具体分管:秘书处、规范自律委员会、服务推广委员会、发展创新委员会.
根据以上信息绘制组织结构图.答案:绘制组织结构图:26.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为()
A.0.9
B.0.5
C.0.6
D.0.8答案:D27.如图所示,圆的内接三角形ABC的角平分线BD与AC交于点D,与圆交于点E,连接AE,已知ED=3,BD=6,则线段AE的长=______.答案:∵BD平分角∠CBA,∴∠CBE=∠EBA又∵∠CBE=∠EAD在△EDA和△EAB中,∠E=∠E,∠EAD=∠EBA∴△EDA∽△EAB∴AE:BE=ED:AE∴AE2=ED?BE又∵ED=3,BD=6,∴BE=9∴AE2=27∴AE=33故为:3328.将5位志愿者分成4组,其中一组为2人,其余各组各1人,到4个路口协助交警执勤,则不同的分配方案有______种(用数字作答).答案:由题意,先分组,再到4个路口协助交警执勤,则不同的分配方案有C25A44=240种故为:240.29.一个多面体的三视图分别是正方形、等腰三角形和矩形,其尺寸如图,则该多面体的体积为()A.48cm3B.24cm3C.32cm3D.28cm3答案:由三视图可知该几何体是平放的直三棱柱,高为4,底面三角形一边长为6,此边上的高为4体积V=Sh=12×6×4×4=48cm3故选A30.平面直角坐标系中,O为坐标原点,设向量其中,若且0≤μ≤λ≤1,那么C点所有可能的位置区域用阴影表示正确的是()
A.
B.
C.
D.
答案:A31.已知:正四棱柱ABCD—A1B1C1D1中,底面边长为2,侧棱长为4,E、F分别为棱AB、BC的中点.
(1)求证:平面B1EF⊥平面BDD1B1;
(2)求点D1到平面B1EF的距离.答案:(1)证明略(2)解析:(1)
建立如图所示的空间直角坐标系,则D(0,0,0),B(2,2,0),E(2,,0),F(,2,0),D1(0,0,4),B1(2,2,4).=(-,,0),=(2,2,0),=(0,0,4),∴·=0,·=0.∴EF⊥DB,EF⊥DD1,DD1∩BD=D,∴EF⊥平面BDD1B1.又EF平面B1EF,∴平面B1EF⊥平面BDD1B1.(2)
由(1)知=(2,2,0),=(-,,0),=(0,-,-4).设平面B1EF的法向量为n,且n=(x,y,z)则n⊥,n⊥即n·=(x,y,z)·(-,,0)=-x+y=0,n·=(x,y,z)·(0,-,-4)=-y-4z=0,令x=1,则y=1,z=-,∴n="(1,1,-")∴D1到平面B1EF的距离d===.32.拟定从甲地到乙地通话m分钟的电话费由f(x)=1.06×(0.50×[m]+1)给出,其中m>0,[m]是大于或等于m的最小整数,若通话费为10.6元,则通话时间m∈______.答案:∵10.6=1.06(0.50×[m]+1),∴0.5[m]=9,∴[m]=18,∴m∈(17,18].故为:(17,18].33.如果椭圆x225+y216=1上一点P到焦点F1的距离为6,则点P到另一个焦点F2的距离为()A.5B.4C.8D.6答案:由椭圆的定义知|PF1|+|PF2|=2a=10,|PF1|=6,故|
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度品牌授权合同:拂晓冥想商标使用许可3篇
- 2024年度企业IT培训与咨询服务合同3篇
- 《导数与定积分总结》课件
- 复旦大学(张奇):2023年大语言模型评测报告
- 2024年度技术服务合同技术指标与服务流程详解
- 2024年度企业与网络安全公司网络安全服务合同
- 2024年度技术研发合作合同(人工智能领域)
- 2024中国烟草总公司内蒙古自治区公司招聘调剂信息易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国平安人寿保险股份限公司嘉兴中心支公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度祁菊离婚财产分配及赡养费协议
- 8S培训教材(-90张)课件
- PPTPEAK经典广告案例分析
- 小学语文《习作一我的拿手好戏》说课稿及教学反思
- 小学音乐《京调》课件
- 初中历史人教七年级下册 隋唐时期繁荣与开放的时代历史复习课学生材料
- 六年级数学上册课件-5.4 扇形-人教版(共14张PPT)
- 三年级下册信息技术教案- 16.二维码-扫出便捷生活|华中师大版(新版)
- 涵洞检查评定表
- DG-TJ 08-2061-2020 建设工程班组安全管理标准 高质量清晰版
- 卫健委2020年落实妇女儿童发展规划情况的汇报
- 2022年公交站台监理规划
评论
0/150
提交评论