版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年扬州环境资源职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.在平行四边形ABCD中,等于()
A.
B.
C.
D.答案:C2.已知,,且与垂直,则实数λ的值为()
A.±
B.1
C.-
D.答案:D3.命题“梯形的两对角线互相不平分”的命题形式为()A.p或qB.p且qC.非pD.简单命题答案:记命题p:梯形的两对角线互相平分,
而原命题是“梯形的两对角线互相不平分”,是命题p的否定形式
故选C4.(理)某单位有8名员工,其中有5名员工曾经参加过一种或几种技能培训,另外3名员工没有参加过任何技能培训,现要从8名员工中任选3人参加一种新的技能培训;
(I)求恰好选到1名曾经参加过技能培训的员工的概率;
(Ⅱ)这次培训结束后,仍然没有参加过任何技能培训的员工人数X是一个随机变量,求X的分布列和数学期望.答案:(I)由题意知本题是一个等可能事件的概率,∵试验发生包含的事件是从8人中选3个,共有C83=56种结果,满足条件的事件是恰好选到1名曾经参加过技能培训的员工,共有C51C32=15∴恰好选到1名已参加过其他技能培训的员工的概率P=1556(II)随机变量X可能取的值是:0,1,2,3.P(X=0)=156P(X=1)=1556P(X=2)=1528P(X=3)=C35C38=528∴随机变量X的分布列是X0123P15615561528528∴X的数学期望是1×1556+2×
1528+3×528=1585.设O是正方形ABCD的中心,向量,,,是(
)
A.平行向量
B.有相同终点的向量
C.相等向量
D.模相等的向量答案:D6.设a,b是非负实数,求证:a3+b3≥ab(a2+b2).答案:证明:由a,b是非负实数,作差得a3+b3-ab(a2+b2)=a2a(a-b)+b2b(b-a)=(a-b)[(a)5-(b)5].当a≥b时,a≥b,从而(a)5≥(b)5,得(a-b)[(a)5-(b)5]≥0;当a<b时,a<b,从而(a)5<(b)5,得(a-b)[(a)5-(b)5]>0.所以a3+b3≥ab(a2+b2).7.已知直线方程l1:2x-4y+7=0,l2:x-2y+5=0,则l1与l2的关系()
A.平行
B.重合
C.相交
D.以上答案都不对答案:A8.正方体ABCD-A1B1C1D1的棱长为2,MN是它的内切球的一条弦(把球面上任意两点之间的线段称为球的弦),P为正方体表面上的动点,当弦MN最长时.PM•PN的最大值为______.答案:设点O是此正方体的内切球的球心,半径R=1.∵PM•PN≤|PM|
|PN|,∴当点P,M,N三点共线时,PM•PN取得最大值.此时PM•PN≤(PO-MO)•(PO+ON),而MO=ON,∴PM•PN≤PO2-R2=PO2-1,当且仅当点P为正方体的一个顶点时上式取得最大值,∴(PM•PN)max=(232)2-1=2.故为2.9.下列几种说法正确的个数是()
①相等的角在直观图中对应的角仍然相等;
②相等的线段在直观图中对应的线段仍然相等;
③平行的线段在直观图中对应的线段仍然平行;
④线段的中点在直观图中仍然是线段的中点.
A.1
B.2
C.3
D.4答案:B10.抛物线y=x2的焦点坐标是()
A.(,0)
B.(0,)
C.(0,1)
D.(1,0)答案:C11.袋子A和袋子B均装有红球和白球,从A中摸出一个红球的概率是13,从B中摸出一个红球的概率是P.
(1)从A中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率;
(2)若A、B两个袋子中的总球数之比为1:2,将A、B中的球装在一起后,从中摸出一个红球的概率为25,求P的值.答案:(1)每次从A中摸一个红球的概率是13,摸不到红球的概率为23,根据独立重复试验的概率公式,故共摸5次,恰好有3次摸到红球的概率为:P=C35(13)3(23)2=10×127×49=40243.(2)设A中有m个球,A、B两个袋子中的球数之比为1:2,则B中有2m个球,∵将A、B中的球装在一起后,从中摸出一个红球的概率是25,∴13m+2mp3m=25,解得p=1330.12.已知a=(1,0),b=(m,m)(m>0),则<a,b>=______.答案:∵b=(m,m)(m>0),∴b与第一象限的角平分线同向,且由原点指向远处,而a=(1,0)同横轴的正方向同向,∴<a,b>=45°,故为:45°13.已知矩形ABCD,R、P分别在边CD、BC上,E、F分别为AP、PR的中点,当P在BC上由B向C运动时,点R在CD上固定不变,设BP=x,EF=y,那么下列结论中正确的是()A.y是x的增函数B.y是x的减函数C.y随x先增大后减小D.无论x怎样变化,y是常数答案:连接AR,如图所示:由于点R在CD上固定不变,故AR的长为定值又∵E、F分别为AP、PR的中点,∴EF为△APR的中位线,则EF=12AR为定值故无论x怎样变化,y是常数故选D14.在极坐标系中,已知点P(2,),则过点P且平行于极轴的直线的方程是()
A.ρsinθ=1
B.ρsinθ=
C.ρcosθ=1
D.ρcosθ=答案:A15.已知A、B、M三点不共线,对于平面ABM外的任意一点O,确定在下列条件下,点P是否与A、B、M一定共面,答案:解:为共面向量,∴P与A、B、M共面,,根据空间向量共面的推论,P位于平面ABM内的充要条件是,∴P与A、B、M不共面.16.刻画数据的离散程度的度量,下列说法正确的是()
(1)应充分利用所得的数据,以便提供更确切的信息;
(2)可以用多个数值来刻画数据的离散程度;
(3)对于不同的数据集,其离散程度大时,该数值应越小.
A.(1)和(3)
B.(2)和(3)
C.(1)和(2)
D.都正确答案:C17.设复数z=x+yi(x,y∈R)与复平面上点P(x,y)对应.
(1)设复数z满足条件|z+3|+(-1)n|z-3|=3a+(-1)na(其中n∈N*,常数a∈
(32
,
3)),当n为奇数时,动点P(x,y)的轨迹为C1;当n为偶数时,动点P(x,y)的轨迹为C2,且两条曲线都经过点D(2,2),求轨迹C1与C2的方程;
(2)在(1)的条件下,轨迹C2上存在点A,使点A与点B(x0,0)(x0>0)的最小距离不小于233,求实数x0的取值范围.答案:(1)方法1:①当n为奇数时,|z+3|-|z-3|=2a,常数a∈
(32
,
3),轨迹C1为双曲线,其方程为x2a2-y29-a2=1;…(3分)②当n为偶数时,|z+3|+|z-3|=4a,常数a∈
(32
,
3),轨迹C2为椭圆,其方程为x24a2+y24a2-9=1;…(6分)依题意得方程组44a2+24a2-9=14a2-29-a2=1⇒4a4-45a2+99=0a4-15a2+36=0
,解得a2=3,因为32<a<3,所以a=3,此时轨迹为C1与C2的方程分别是:x23-y26=1(x>0),x212+y23=1.…(9分)方法2:依题意得|z+3|+|z-3|=4a|z+3|-|z-3|=2a⇒|z+3|=3a|z-3|=a…(3分)轨迹为C1与C2都经过点D(2,2),且点D(2,2)对应的复数z=2+2i,代入上式得a=3,…(6分)即|z+3|-|z-3|=23对应的轨迹C1是双曲线,方程为x23-y26=1(x>0);|z+3|+|z-3|=43对应的轨迹C2是椭圆,方程为x212+y23=1.…(9分)(2)由(1)知,轨迹C2:x212+y23=1,设点A的坐标为(x,y),则|AB|2=(x-x0)2+y2=(x-x0)2+3-14x2=34x2-2x0x+x20+3=34(x-43x0)2+3-13x20,x∈[-23,23]…(12分)当0<43x0≤23即0<x0≤332时,|AB|2min=3-13x20≥43⇒0<x0≤5当43x0>23即x0>332时,|AB|min=|x0-23|≥233⇒x0≥833,…(16分)综上,0<x0≤5或x0≥833.…(18分)18.经过抛物线y2=2x的焦点且平行于直线3x-2y+5=0的直线的方程是()
A.6x-4y-3=0
B.3x-2y-3=0
C.2x+3y-2=0
D.2x+3y-1=0答案:A19.圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ.
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过圆O1,圆O2交点的直线的直角坐标方程.答案:以有点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1)x=ρcosθ,y=ρsinθ,由ρ=4cosθ得ρ2=4ρcosθ.所以x2+y2=4x.即x2+y2-4x=0为圆O1的直角坐标方程.….(3分)同理x2+y2+4y=0为圆O2的直角坐标方程.….(6分)(2)由x2+y2-4x=0x2+y2+4y=0解得x1=0y1=0x2=2y2=-2.即圆O1,圆O2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x.…(10分)20.设随机变量X的分布列为P(X=k)=,k=1,2,3,4,5,则P()等于()
A.
B.
C.
D.答案:C21.用反证法证明“如果a<b,那么“”,假设的内容应是()
A.
B.
C.且
D.或
答案:D22.已知A(4,1,9),B(10,-1,6),则A,B两点间距离为______.答案:∵A(4,1,9),B(10,-1,6),∴A,B两点间距离为|AB|=(10-4)2+(-1-1)2+(6-9)2=7故为:723.若x~B(3,13),则P(x=1)=______.答案:∵x~B(3,13),∴P(x=1)=C13(13)(1-13)2=49.故为:49.24.若下列算法的程序运行的结果为S=132,那么判断框中应填入的关于k的判断条件是
______.答案:本题考查根据程序框图的运算,写出控制条件按照程序框图执行如下:s=1
k=12s=12
k=11s=12×11=132
k=10因为输出132故此时判断条件应为:K≤10或K<11故为:K≤10或K<1125.在极坐标系下,圆C:ρ2+4ρsinθ+3=0的圆心坐标为()
A.(2,0)
B.
C.(2,π)
D.答案:D26.在参数方程所表示的曲线上有B、C两点,它们对应的参数值分别为t1、t2,则线段BC的中点M对应的参数值是()
A.
B.
C.
D.答案:B27.一个水平放置的平面图形,其斜二测直观图是一个等腰梯形,其底角为45°,腰和上底均为1(如图),则平面图形的实际面积为______.答案:恢复后的原图形为一直角梯形,上底为1,高为2,下底为1+2,S=12(1+2+1)×2=2+2.故为:2+228.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4只,那么310为()A.恰有1只坏的概率B.恰有2只好的概率C.4只全是好的概率D.至多2只坏的概率答案:∵盒中有10只螺丝钉∴盒中随机地抽取4只的总数为:C104=210,∵其中有3只是坏的,∴所可能出现的事件有:恰有1只坏的,恰有2只坏的,恰有3只坏的,4只全是好的,至多2只坏的取法数分别为:C31×C73=105,C32C72=63,C74=35,C74+C31×C73+C32×C72=203∴恰有1只坏的概率分别为:105210=12,,恰有2只好的概率为63210=310,,4只全是好的概率为35210=16,至多2只坏的概率为203210=2930;故A,C,D不正确,B正确故选B29.直线l:y-1=k(x-1)和圆C:x2+y2-2y=0的关系是()
A.相离
B.相切或相交
C.相交
D.相切答案:C30.在四边形ABCD中有AC=AB+AD,则它的形状一定是______.答案:由向量加法的平行四边形法则及AC=AB+AD,知四边形ABCD为平行四边形,故为:平行四边形.31.如果抛物线y2=a(x+1)的准线方程是x=-3,那么这条抛物线的焦点坐标是()A.(3,0)B.(2,0)C.(1,0)D.(-1,0)答案:抛物线y2=a(x+1)可由抛物线y2=ax向左平移一个单位长度得到,因为抛物线y2=a(x+1)的准线方程是x=-3,所以抛物线y2=ax的准线方程是x=-2,且焦点坐标为(2,0),那么抛物线y2=a(x+1)的焦点坐标为(1,0).故选C.32.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()
A.至少有1个白球;都是白球
B.至少有1个白球;至少有1个红球
C.恰有1个白球;恰有2个白球
D.至少有一个白球;都是红球答案:C33.若P=+,Q=+(a≥0),则P,Q的大小关系是()
A.P>Q
B.P=Q
C.P<Q
D.由a的取值确定答案:C34.阅读下面的程序框图,该程序运行后输出的结果为______.答案:循环前,S=0,A=1,第1次判断后循环,S=1,A=2,第2次判断并循环,S=3,A=3,第3次判断并循环,S=6,A=4,第4次判断并循环,S=10,A=5,第5次判断并循环,S=15,A=6,第6次判断并退出循环,输出S=15.故为:15.35.三棱锥A-BCD中,平面ABD与平面BCD的法向量分别为n1,n2,若<n1,n2>=,则二面角A-BD-C的大小为()
A.
B.
C.或
D.或答案:C36.设、、是三角形的边长,求证:
≥答案:证明见解析解析:证明:由不等式的对称性,不防设≥≥,则≥左式-右式≥≥≥037.已知实数a,b满足等式2a=3b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;
⑤a=b.其中可能成立的关系式有()
A.①②③
B.①②⑤
C.①③⑤
D.③④⑤答案:B38.如图,O是正方形ABCD对角线的交点,四边形OAED,OCFB都是正方形,在图中所示的向量中:
(1)与AO相等的向量有
______;
(2)写出与AO共线的向量有
______;
(3)写出与AO的模相等的向量有
______;
(4)向量AO与CO是否相等?答
______.答案:(1)与AO相等的向量有BF(2)与AO共线的向量有DE,CO,BF(3)与AO的模相等的向量有DE,
DO,AE,CO,CF,BF,BO(4)模相等,方向相反故AO与CO不相等39.某班有40名学生,其中有15人是共青团员.现将全班分成4个小组,第一组有学生10人,共青团员4人,从该班任选一个学生代表.在选到的学生代表是共青团员的条件下,他又是第一组学生的概率为()A.415B.514C.14D.34答案:由于所有的共青团员共有15人,而第一小组有4人是共青团员,故在选到的学生代表是共青团员的条件下,他又是第一组学生的概率为415,故选A.40.已知指数函数f(x)的图象过点(3,8),求f(6)的值.答案:设指数函数为:f(x)=ax,因为指数函数f(x)的图象过点(3,8),所以8=a3,∴a=2,所求指数函数为f(x)=2x;所以f(6)=26=64所以f(6)的值为64.41.甲袋中装有3个白球和5个黑球,乙袋中装有4个白球和6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分混合后,再从乙袋中随机取出一个球放回甲袋中,则甲袋中白球没有减少的概率为()A.944B.2544C.3544D.3744答案:白球没有减少的情况有:①抓出黑球,抓入任意球,概率是:58.抓出白球,抓入白球,概率是38×511=1588,故所求事件的概率为58+1588=3544,故选C.42.已知A(1,0,0)、B(0,1,0)、C(0,0,1)三点,n=(1,1,1),则以n为方向向量的直线l与平面ABC的关系是()A.垂直B.不垂直C.平行D.以上都有可能答案:由题意,AB=(-1,1,0),BC=(0,-1,1)∵n•AB=0,n•BC=0∴以n为方向向量的直线l与平面ABC垂直故选A.43.如图,在平行四边形OABC中,点C(1,3).
(1)求OC所在直线的斜率;
(2)过点C做CD⊥AB于点D,求CD所在直线的方程.答案:(1)∵点O(0,0),点C(1,3),∴OC所在直线的斜率为kOC=3-01-0=3.(2)在平行四边形OABC中,AB∥OC,∵CD⊥AB,∴CD⊥OC.∴CD所在直线的斜率为kCD=-13.∴CD所在直线方程为y-3=-13(x-1),即x+3y-10=0.44.双曲线的中心是原点O,它的虚轴长为26,右焦点为F(c,0)(c>0),直线l:x=a2c与x轴交于点A,且|OF|=3|OA|.过点F的直线与双曲线交于P、Q两点.
(Ⅰ)求双曲线的方程;
(Ⅱ)若AP•AQ=0,求直线PQ的方程.答案:解.(Ⅰ)由题意,设曲线的方程为x2a2-y2b2=1(a>0,b>0)由已知a2+6=c2c=3a2c解得a=3,c=3所以双曲线的方程:x23-y26=1.(Ⅱ)由(Ⅰ)知A(1,0),F(3,0),当直线PQ与x轴垂直时,PQ方程为x=3.此时,AP•AQ≠0,应舍去.当直线PQ与x轴不垂直时,设直线PQ的方程为y=k(x-3).由方程组x23-y26=1y=k(x-3)得(k2-2)x2-6k2x+9k2+6=0由于过点F的直线与双曲线交于P、Q两点,则k2-2≠0,即k≠±2,由于△=36k4-4(k2-2)(9k2+6)=48(k2+1)>0得k∈R.∴k∈R且k≠±2(*)设P(x1,y1),Q(x2,y2),则x1+x2=6k2k2-2(1)x1x2=9k2+6k2-2(2)由直线PQ的方程得y1=k(x1-3),y2=k(x2-3)于是y1y2=k2(x1-3)(x2-3)=k2[x1x2-3(x1+x2)+9](3)∵AP•AQ=0,∴(x1-1,y1)•(x2-1,y2)=0即x1x2-(x1+x2)+1+y1y2=0(4)由(1)、(2)、(3)、(4)得9k2+6k2-2-6k2k2-2+1+k2(9k2+6k2-2-36k2k2-2+9)=0整理得k2=12,∴k=±22满足(*)∴直线PQ的方程为x-2y-3=0或x+2y-3=045.在下列4个命题中,是真命题的序号为()
①3≥3;
②100或50是10的倍数;
③有两个角是锐角的三角形是锐角三角形;
④等腰三角形至少有两个内角相等.
A.①
B.①②
C.①②③
D.①②④答案:D46.已知a、b、c为某一直角三角形的三条边长,c为斜边.若点(m,n)在直线ax+by+2c=0上,则m2+n2的最小值是______.答案:根据题意可知:当(m,n)运动到原点与已知直线作垂线的垂足位置时,m2+n2的值最小,由三角形为直角三角形,且c为斜边,根据勾股定理得:c2=a2+b2,所以原点(0,0)到直线ax+by+2c=0的距离d=|0+0+2c|a2+b2=2,则m2+n2的最小值为4.故为:4.47.若向量a,b,c满足a∥b且a⊥c,则c(a+2b)=______.答案:∵a∥b∴存在λ使b=λa∵a⊥c∴a?c=0∴c?(a+2b)=c?a+2c?b=2c?λa=0故为:0.48.过A(-2,3),B(2,1)两点的直线的斜率是()
A.
B.
C.-2
D.2答案:B49.如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且
DF=CF=2,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为.答案:设AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=7250.已知a>0,b>0且a+b>2,求证:1+ba,1+ab中至少有一个小于2.答案:证明:假设1+ba,1+ab都不小于2,则1+ba≥2,1+ab≥2(6分)因为a>0,b>0,所以1+b≥2a,1+a≥2b,1+1+a+b≥2(a+b)即2≥a+b,这与已知a+b>2相矛盾,故假设不成立(12分)综上1+ba,1+ab中至少有一个小于2.(14分)第2卷一.综合题(共50题)1.对变量x、y有观测数据(xi,yi)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()
A.变量x与y正相关,u与v正相关
B.变量x与y正相关,u与v负相关
C.变量x与y负相关,u与v正相关
D.变量x与y负相关,u与v负相关答案:C2.设F1、F2分别是椭圆x225+y216=1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点距离为______.答案:由题意知,OM是三角形PF1P的中位线,∵|OM|=3,∴|PF2|=6,又|PF1|+|PF2|=2a=10,∴|PF1|=4,故为4.3.对于各数互不相等的整数数组(i1,i2,i3,…in)
(n是不小于2的正整数),对于任意p,q∈1,2,3,…,n,当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,则数组(2,4,3,1)中的逆序数等于______.答案:由题意知当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,在数组(2,4,3,1)中逆序有2,1;4,3;4,1;3,1共有4对逆序数对,故为:4.4.设椭圆C1的离心率为513,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为
______答案:根据题意可知椭圆方程中的a=13,∵ca=513∴c=5根据双曲线的定义可知曲线C2为双曲线,其中半焦距为5,实轴长为8∴虚轴长为225-16=6∴双曲线方程为x216-y29=1故为:x216-y29=15.若A(0,2,198),B(1,-1,58),C(-2,1,58)是平面α内的三点,设平面α的法向量a=(x,y,z),则x:y:z=______.答案:AB=(1,-3,-74),AC=(-2,-1,-74),α•AB=0,α•AC=0,∴x=23yz=-43y,x:y:z=23y:y:(-43y)=2:3:(-4).故为2:3:-4.6.将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD中点,则∠AED的大小为()
A.45°
B.30°
C.60°
D.90°答案:D7.已知向量a=(3,4),b=(8,6),c=(2,k),其中k为常数,如果<a,c>=<b,c>,则k=______.答案:由题意可得cos<a,c>=cos<b,c>,∴a?c|a|?|c|=b?c|b|?|c|,∴6+4k54+k
2=16+6k104+k
2.解得k=2,故为2.8.若向量a,b的夹角为120°,且|a|=1,|b|=2,c=a+b,则有()A.c⊥aB.c⊥bC.c‖bD.c‖a答案:由题意知ac=a
(a+b)=a2+
a
b=1+1×2cos120°=0,所以a⊥c.故选A.9.曲线的极坐标方程ρ=4sinθ化为直角坐标方程为______.答案:将原极坐标方程ρ=4sinθ,化为:ρ2=4ρsinθ,化成直角坐标方程为:x2+y2-4y=0,即x2+(y-2)2=4.故为:x2+(y-2)2=4.10.用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)时,第一步验证n=1时,左边应取的项是______答案:在等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)中,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,故n=1时,等式左边的项为:1+2+3+4故为:1+2+3+411.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题中为真命题的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不难判断命题p为真命题,命题q为假命题,从而?p为假命题,?q为真命题,所以A、B、C均为假命题,故选D.12.如图,PA,PB切⊙O于
A,B两点,AC⊥PB,且与⊙O相交于
D,若∠DBC=22°,则∠APB═______.答案:连接AB根据弦切角有∠DBC=∠DAB=22°
∠PAC=∠DBA因为垂直∠DCB=90°根据外角∠ADB=∠DBC+∠DCB=112°
∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故为:44°13.若集合S={a,b,c}(a、b、c∈R)中三个元素为边可构成一个三角形,那么该三角形一定不可能是()
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形答案:D14.在班级随机地抽取8名学生,得到一组数学成绩与物理成绩的数据:
数学成绩6090115809513580145物理成绩4060754070856090(1)计算出数学成绩与物理成绩的平均分及方差;
(2)求相关系数r的值,并判断相关性的强弱;(r≥0.75为强)
(3)求出数学成绩x与物理成绩y的线性回归直线方程,并预测数学成绩为110的同学的物理成绩.答案:(1)计算出数学成绩与物理成绩的平均分及方差;.x=100,.y=65,数学成绩方差为750,物理成绩方差为306.25;(4分)(2)求相关系数r的值,并判断相关性的强弱;r=6675≈0.94>0.75,相关性较强;(8分)(3)求出数学成绩x与物理成绩y的线性回归直线方程,并预测数学成绩为110的同学的物理成绩.y=0.6x+5,预测数学成绩为110的同学的物理成绩为71.(12分)15.一个口袋中有红球3个,白球4个.
(Ⅰ)从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求恰好第2次中奖的概率;
(Ⅱ)从中有放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X的数学期望E(X).答案:(I)“恰好第2次中奖“即为“第一次摸到的2个白球,第二次至少有1个红球”,其概率为C24C27×C23+C13C12C25=935;(II)摸一次中奖的概率为p=C23+C13C14C27=57,由条件知X~B(4,p),∴EX=np=4×57=207.16.三棱柱ABC-A1B1C1中,M、N分别是BB1、AC的中点,设,,=,则等于()
A.
B.
C.
D.答案:A17.在复平面内,记复数3+i对应的向量为OZ,若向量OZ饶坐标原点逆时针旋转60°得到向量OZ所对应的复数为______.答案:向量OZ饶坐标原点逆时针旋转60°得到向量所对应的复数为(3+i)(cos60°+isin60°)=(3+i)(12+32i)=2i,故为2i.18.从2008名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从2008人中剔除8人,剩下的2000人再按系统抽样的方法抽取50人,则在2008人中,每人入选的概率()
A.不全相等
B.均不相等
C.都相等,且为
D.都相等,且为答案:C19.|a|=2,|b|=3,|a+b|=4,则a与b的夹角是______.答案:∵|a+b|=4,∴a2+2a?b+b2=16∴a?b=32∴cos<a,b>=a?b|.a|×|.b|=322×3=14∵<a,b>∈[0°,180°]∴.a与.b的夹角为arccos14故为arccos1420.与直线3x+4y-3=0平行,并且距离为3的直线方程为______.答案:设所求直线上任意一点P(x,y),由题意可得点P到所给直线的距离等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故为3x+4y-18=0或3x+4y+12=0.21.(坐标系与参数方程选做题)点P(-3,0)到曲线x=t2y=2t(其中参数t∈R)上的点的最短距离为______.答案:设点Q(t2,2t)为曲线上的任意一点,则|PQ|=(t2+3)2+(2t)2=(t2+5)2-16≥52-16=3,当且仅当t=0取等号,此时Q(0,0).故点P(-3,0)到曲线x=t2y=2t(其中参数t∈R)上的点的最短距离为3.故为3.22.已知双曲线的a=5,c=7,则该双曲线的标准方程为()
A.-=1
B.-=1
C.-=1或-=1
D.-=0或-=0答案:C23.已知点M(1,2),N(1,1),则直线MN的倾斜角是()A.90°B.45°C.135°D.不存在答案:∵点M(1,2),N(1,1),则直线MN的斜率不存在,故直线MN的倾斜角是90°,故选A.24.有四条线段,其长度分别为2,3,4,5,现从中任取三条,则以这三条线段为边可以构成三角形的概率是______.答案:所有的取法共有C34=4种,三条线段构成三角形的条件是任意两边之和大于第三边,其中能够成三角形的取法有①2、3、4;②2、4、5;③3、4、5,共有3种,故这三条线段为边可以构成三角形的概率是34,故为34.25.若点(2,-2)在圆(x-a)2+(y-a)2=16的内部,则实数a的取值范围是()
A.-2<a<2
B.0<a<2
C.a<-2或a>2
D.a=±2答案:A26.下列各图形不是函数的图象的是()A.
B.
C.
D.
答案:由函数的概念,B中有的x,存在两个y与x对应,不符合函数的定义,而ACD均符合.故选B27.设两个正态分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)的密度曲线如图所示,则有()
A.μ1<μ2,σ1<σ2
B.μ1<μ2,σ1>σ2
C.μ1>μ2,σ1<σ2
D.μ1>μ2,σ1>σ2
答案:A28.(几何证明选讲选做题)如图,⊙O中,直径AB和弦DE互相垂直,C是DE延长线上一点,连接BC与圆0交于F,若∠CFE=α(α∈(0,π2)),则∠DEB______.答案:∵直径AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四点共圆∴∠EFC=∠D=α∴∠DEB=α故为:α29.已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l,过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p=(
)。答案:230.若矩阵A=
72
69
67
65
62
59
81
74
68
64
59
52
85
79
76
72
69
64
228
219
211
204
195
183
是表示我校2011届学生高二上学期的期中成绩矩阵,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含义如下:i=1表示语文成绩,i=2表示数学成绩,i=3表示英语成绩,i=4表示语数外三门总分成绩j=k,k∈N*表示第50k名分数.若经过一定量的努力,各科能前进的名次是一样的.现小明的各科排名均在250左右,他想尽量提高三门总分分数,那么他应把努力方向主要放在哪一门学科上()
A.语文
B.数学
C.外语
D.都一样答案:B31.若施化肥量x与小麦产量y之间的回归方程为y=250+4x(单位:kg),当施化肥量为50kg时,预计小麦产量为______kg.答案:根据回归方程为y=250+4x,当施化肥量为50kg,即x=50kg时,y=250+4x=250+200=450kg故为:45032.若则实数λ的值是()
A.
B.
C.
D.答案:D33.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:
①计算c=a2+b2;
②输入直角三角形两直角边长a,b的值;
③输出斜边长c的值;
其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③答案:由算法规则得:第一步:输入直角三角形两直角边长a,b的值,第二步:计算c=a2+b2,第三步:输出斜边长c的值;这样一来,就是斜边长c的一个算法.故选D.34.在直角坐标系内,坐标轴上的点构成的集合可表示为()A.{(x,y)|x=0,y≠0或x≠0,y=0}B.{(x,y)|x=0且y=0}C.{(x,y)|xy=0}D.{(x,y)|x,y不同时为零}答案:在x轴上的点(x,y),必有y=0;在y轴上的点(x,y),必有x=0,∴xy=0.∴直角坐标系中,x轴上的点的集合{(x,y)|y=0},直角坐标系中,y轴上的点的集合{(x,y)|x=0},∴坐标轴上的点的集合可表示为{(x,y)|y=0}∪{(x,y)|x=0}={(x,y)|xy=0}.故选C.35.P是直线3x+y+1=0上一点,P到点Q(0,2)距离的最小值是______.答案:过点Q作直线的垂线段,当P是垂足时,线段PQ最短,故最小距离是点Q(0,2)到直线3x+y+1=0的距离d,d=|0+2+1|3+1=32=1.5.∴P到点Q(0,2)距离的最小值是1.5;故为1.5.36.某自动化仪表公司组织结构如图所示,其中采购部的直接领导是()
A.副总经理(甲)
B.副总经理(乙)
C.总经理
D.董事会
答案:B37.在空间坐标中,点B是A(1,2,3)在yOz坐标平面内的射影,O为坐标原点,则|OB|等于()
A.
B.
C.2
D.答案:B38.某次我市高三教学质量检测中,甲、乙、丙三科考试成绩的直方图如如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由如图曲线可得下列说法中正确的一项是()
A.甲科总体的标准差最小
B.丙科总体的平均数最小
C.乙科总体的标准差及平均数都居中
D.甲、乙、丙的总体的平均数不相同
答案:A39.某重点高中高二历史会考前,进行了五次历史会考模拟考试,某同学在这五次考试中成绩如下:90,90,93,94,93,则该同学的这五次成绩的平均值和方差分别为()
A.92,2
B.92,2.8
C.93,2
D.93,2.8答案:B40.如图,PA切圆O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针旋转600到OD,则PD的长为()
A.3
B.
C.
D.
答案:D41.把38化为二进制数为()A.101010(2)B.100110(2)C.110100(2)D.110010(2)答案:可以验证所给的四个选项,在A中,2+8+32=42,在B中,2+4+32=38经过验证知道,B中的二进制表示的数字换成十进制以后得到38,故选B.42.若两圆x2+y2=m和x2+y2+6x-8y-11=0有公共点,则实数m的取值范围是(
)
A.(-∞,1)
B.(121,+∞)
C.[1,121]
D.(1,121)答案:C43.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4只,那么310为()A.恰有1只坏的概率B.恰有2只好的概率C.4只全是好的概率D.至多2只坏的概率答案:∵盒中有10只螺丝钉∴盒中随机地抽取4只的总数为:C104=210,∵其中有3只是坏的,∴所可能出现的事件有:恰有1只坏的,恰有2只坏的,恰有3只坏的,4只全是好的,至多2只坏的取法数分别为:C31×C73=105,C32C72=63,C74=35,C74+C31×C73+C32×C72=203∴恰有1只坏的概率分别为:105210=12,,恰有2只好的概率为63210=310,,4只全是好的概率为35210=16,至多2只坏的概率为203210=2930;故A,C,D不正确,B正确故选B44.用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)答案:证明:①n=1时,左边=2,右边=2,等式成立;②假设n=k时,结论成立,即:(k+1)+(k+2)+…+(k+k)=k(3k+1)2则n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1)=k(3k+1)2+3k+2=(k+1)(3k+4)2故n=k+1时,等式成立由①②可知:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)成立45.在四面体O-ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,则OE=______(用a,b,c表示)答案:在四面体O-ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,∴OE=12(OA+OD)=OA2+OD2=12a+12×12(OB+OC)=12a+14(b+c)=12a+14b+14c,故为:12a+14b+14c.46.把方程化为以参数的参数方程是(
)A.B.C.D.答案:D解析:,取非零实数,而A,B,C中的的范围有各自的限制47.已知x,y之间的一组数据:x1.081.121.191.28y2.252.372.402.55y与x之间的线性性回归方y=bx+a必过定点______.答案:回归直线方程一定过样本的中心点(.x,.y),.x=1.08+1.12+1.19+1.284=1.1675,
.y=2.25+2.37+2.40+2.554=2.3925,∴样本中心点是(1.1675,2.3925),故为(1.1675,2.3925).48.设向量a=(x+1,y),b=(x-1,y),点P(x,y)为动点,已知|a|+|b|=4.
(1)求点p的轨迹方程;
(2)设点p的轨迹与x轴负半轴交于点A,过点F(1,0)的直线交点P的轨迹于B、C两点,试推断△ABC的面积是否存在最大值?若存在,求其最大值;若不存在,请说明理由.答案:(1)由已知,(x+)2+y2+(x-1)2+1=4,所以动点P的轨迹M是以点E(-1,0),F(1,0)为焦点,长轴长为4的椭圆.因为c=1,a=2,则b2=a2-c2=3.故动点P的轨迹M方程是x24+y23=1(2)设直线BC的方程x=my+1与(1)中的椭圆方程x24+y23=1联立消去x可得(3m2+4)y2+6my-9=0,设点B(x1,y1),C(x2,y2)则y1+y2=-6m3m2+4,y1y2=-93m2+4,所以|BC|=m2+1(y1+y2)2-4y1y2=12(m2+1)3m2+4点A到直线BC的距离d=31+m2S△ABC=12|BC|d=181+m23m2+4令1+m2=t,t≥1,∴S△ABC=12|BC|d=18t3t2+1=183t+1t≤92故三角形的面积最大值为9249.根据下面的要求,求满足1+2+3+…+n>500的最小的自然数n.
(1)画出执行该问题的程序框图;
(2)以下是解决该问题的一个程序,但有几处错误,请找出错误并予以更正.
i=1S=1n=0DO
S<=500
S=S+i
i=i+1
n=n+1WENDPRINT
n+1END.答案:(1)程序框图如左图所示.或者,如右图所示:(2)①DO应改为WHILE;
②PRINT
n+1
应改为PRINT
n;
③S=1应改为S=0.50.下列各组集合,表示相等集合的是()
①M={(3,2)},N={(2,3)};
②M={3,2},N={2,3};
③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对答案:①中M中表示点(3,2),N中表示点(2,3);②中由元素的无序性知是相等集合;③中M表示一个元素,即点(1,2),N中表示两个元素分别为1,2.所以表示相等的集合是②.故选B.第3卷一.综合题(共50题)1.设随机变量X~N(μ,δ2),且p(X≤c)=p(X>c),则c的值()
A.0
B.1
C.μ
D.μ答案:C2.写出按从小到大的顺序重新排列x,y,z三个数值的算法.答案:算法如下:(1).输入x,y,z三个数值;(2).从三个数值中挑出最小者并换到x中;(3).从y,z中挑出最小者并换到y中;(4).输出排序的结果.3.用0.618法确定的试点,则经过(
)次试验后,存优范围缩小为原来的0.6184倍.答案:54.已知直线l的参数方程为x=-4+4ty=-1-2t(t为参数),圆C的极坐标方程为ρ=22cos(θ+π4),则圆心C到直线l的距离是______.答案:直线l的普通方程为x+2y+6=0,圆C的直角坐标方程为x2+y2-2x+2y=0.所以圆心C(1,-1)到直线l的距离d=|1-2+6|5=5.故为5.5.如图是用来求2+32+43+54+…+101100的计算程序,请补充完整:______.
答案:2+32+43+54+…+101100=(1+1)+(1+12)+(1+13)+…+(1+1100)故循环体中应是S=S+(1+1i)故为:S=S+(1+1i)6.已知函数f(x)=(12)x,a,b∈R*,A=f(a+b2),B=f(ab),C=f(2aba+b),则A、B、C的大小关系为______.答案:∵a+b2≥ab,2aba+b=21a+1b≤221ab=ab,∴a+b2≥ab≥2aba+b>0又
f(x)=(12)x在R上是减函数,∴f(a+b2)≤f(ab)
≤f(2aba+b)即A≤B≤C故为:A≤B≤C.7.今天为星期六,则今天后的第22010天是()A.星期一B.星期二C.星期四D.星期日答案:∵22010=8670=(7+1)670=C6700×7670×10+C6701×7669×11+C6702×7668×12+…+C6702010×70×1670∴22010除7的余数是1故今天为星期六,则今天后的第22010天是星期日故选D8.已知f(x)=3mx2-2(m+n)x+n(m≠0)满足f(0)•f(1)>0,设x1,x2是方程f(x)=0的两根,则|x1-x2|的取值范围为()
A.[,)
B.[,)
C.[,)
D.[,)答案:A9.将包含甲、乙两人的4位同学平均分成2个小组参加某项公益活动,则甲、乙两名同学分在同一小组的概率为()
A.
B.
C.
D.答案:C10.俊、杰兄弟俩分别在P、Q两篮球队效力,P队、Q队分别有14和15名球员,且每个队员在各自队中被安排首发上场的机会是均等的,则P、Q两队交战时,俊、杰兄弟俩同为首发上场交战的概率是(首发上场各队五名队员)(
)A.B.C.D.答案:B解析:解:P(俊首发)=
P(杰首发)==P(俊、杰同首发)=
选B评析:考察考生等可能事件的概率与相互独立事件的概率问题。11.“x=2kπ+π4(k∈Z)”是“tanx=1”成立的()A.充分不必要条件B.必要不充分条件C.充分条件D.既不充分也不必要条件答案:tan(2kπ+π4)=tanπ4=1,所以充分;但反之不成立,如tan5π4=1.故选A12.如图所示的几何体ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥AB,M是EC的中点,
(Ⅰ)求证:DM⊥EB;
(Ⅱ)设二面角M-BD-A的平面角为β,求cosβ.答案:分别以直线AE,AB,AD为x轴、y轴、z轴,建立如图所示的空间直角坐标系A-xyz,设CB=a,则A(0,0,0),E(2a,0,0),B(0,2a,0),C(0,2a,a),D(0,0,2a)所以M(a,a,a2).(Ⅰ):DM=(a,a,-3a2)
,EB=(-2a,2a,0)DM•EB=a•(-2a)+a•2a+0=0.∴DM⊥EB,即DM⊥EB.(Ⅱ)设平面MBD的法向量为n=(x,y,z),DB=(0,2a,-2a),由n⊥DB,n⊥DM,得n•DB=2ay-2az=0n•DM=ax+ay-3a2z=0⇒y=zx+y-3z2=0取z=2得平面MBD的一非零法向量为n=(1,2,2),又平面BDA的一个法向量n1=(1,0,0).∴cos<n,n1>
=1+0+012+22+22•12+02+
02=13,即cosβ=1313.下列四个散点图中,使用线性回归模型拟合效果最好的是()
A.
B.
C.
D.
答案:D14.已知两组样本数据x1,x2,…xn的平均数为h,y1,y2,…ym的平均数为k,则把两组数据合并成一组以后,这组样本的平均数为()
A.
B.
C.
D.答案:B15.下面的结构图,总经理的直接下属是()
A.总工程师和专家办公室
B.开发部
C.总工程师、专家办公室和开发部
D.总工程师、专家办公室和所有七个部答案:C16.已知函数f(x)=2x,x≤1log13x,x>1,若f(a)=2,则a=______.答案:当a≤1时y=2x∴2a=2∴a=1当a>1时y=log13x∴2=loga13∴a=19不成立所以a=1故为:117.直线x=-3+ty=1-t(t是参数)被圆x=5cosθy=5sinθ(θ是参数)所截得的弦长是______.答案:把直线和圆的参数方程化为普通方程得:直线x+y+2=0,圆x2+y2=25,画出函数图象,如图所示:过圆心O(0,0)作OC⊥AB,根据垂径定理得到:AC=BC=12AB,连接OA,则|OA|=5,且圆心O到直线x+y+2=0的距离|OC|=|2|2=2,在直角△ACO中,根据勾股定理得:AC=23,所以AB=223,则直线被圆截得的弦长为223.故为:22318.两直线3x+y-3=0与6x+my+1=0平行,则它们之间的距离为()
A.4
B.
C.
D.答案:D19.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为()
A.8
B.24
C.48
D.120答案:C20.两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为(
)
A.3
B.2
C.-1
D.0答案:A21.某市为研究市区居民的月收入调查了10000人,并根据所得数据绘制了样本的频率分布直方图(如图).
(Ⅰ)求月收入在[3000,3500)内的被调查人数;
(Ⅱ)估计被调查者月收入的平均数(同一组中的数据用该组区间的中点值作代表).
答案:(I)10000×0.0003×500=1500(人)∴月收入在[3000,3500)内的被调查人数1500人(II).x=1250×0.1+1750×0.2+2250×0.25+2750×0.25+3250×0.15+3750×0.05=2400∴估计被调查者月收入的平均数为240022.某厂一批产品的合格率是98%,检验单位从中有放回地随机抽取10件,则计算抽出的10件产品中正品数的方差是______.答案:用X表示抽得的正品数,由于是有放回地随机抽取,所以X服从二项分布B(10,0.98),所以方差D(X)=10×0.98×0.02=0.196故为:0.196.23.已知R为实数集,Q为有理数集.设函数f(x)=0,(x∈CRQ)1,(x∈Q),则()A.函数y=f(x)的图象是两条平行直线B.limx→∞f(x)=0或limx→∞f(x)=1C.函数f[f(x)]恒等于0D.函数f[f(x)]的导函数恒等于0答案:函数y=f(x)的图象是两条平行直线上的一些孤立的点,故A不正确;函数f(x)的极限只有唯一的值,左右极限不等,则该函数不存在极限,故B不正确;若x是无理数,则f(x)=0,f[f(x)]=f(0)=1,故C不正确;∵f[f(x)]=1,∴函数f[f(x)]的导函数恒等于0,故D正确;故选D.24.在△ABC中,D为AB上一点,M为△ABC内一点,且满足AD=34AB,AM=AD+35BC,则△AMD与△ABC的面积比为()A.925B.45C.916D.920答案:AP=AD+DP=AD+35BC,DP=35BC.∴三角形ADP的高三角形ABC=ADAB=34,∴S△APDS△ABC=35?34=920.故选D.25.如图,正六边形ABCDEF中,=()
A.
B.
C.
D.
答案:D26.假设两圆互相外切,求证:用连心线做直径的圆,必与前两圆的外公切线相切.答案:证明:设⊙O1及⊙O2为互相外切的两个圆,其一外公切线为A1A2,切点为A1及A2令点O为连心线O1O2的中点,过O作OA⊥A1A2,由直角梯形的中位线性质得:OA=12(O1A1+O2A2)=12O1O2,∴以O1O2为直径,即以O为圆心,OA为半径的圆必与直线A1A2相切,同理可证,此圆必切于⊙O1及⊙O2的另一条外公切线.27.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()
A.10种
B.20种
C.25种
D.32种答案:D28.已知直线ax+by+c=0(abc≠0)与圆x2+y2=1相切,则三条边长分别为|a|、|b|、|c|的三角形()
A.是锐角三角形
B.是直角三角形
C.是钝角三角形
D.不存在答案:B29.已知椭圆C的左右焦点坐标分别是(-2,0),(2,0),离心率22,直线y=x-1与椭圆C交于不同的两点A,B.
(1)求椭圆C的方程;
(2)求弦AB的长度.答案:(本小题满分13分)(1)依题意可设椭圆C的方程为x2a2+y2b2=1(a>b>0)…(1分)则c=2e=ca=22,解得a=22c=2…(3分)∴b2=a2-c2=8-4=4…(5分)∴椭圆C的方程为x28+y24=1…(6分)(2)设A(x1,y1),B(x2,y2)…(7分)联立方程x28+y24=1y=x-1,消去y,并整理得:3x2-4x-6=0…(9分)∴x1+x2=43x1•x2=-2…(10分)∴|AB|=1+12|x2-x1|=2[(x1+x2)2-4x1x2]
=2[(43)2-4×(-2)]=4113…(12分)∴|AB|=4113…(13分)30.若一元二次方程kx2-4x-5=0
有两个不相等实数根,则k
的取值范围是______.答案:∵kx2-4x-5=0有两个不相等的实数根,∴△=16+20k>0,且k≠0,解得,k>-45且k≠0;故是:k>-45且k≠0.31.两个样本甲和乙,其中=10,=10,=0.055,=0.015,那么样本甲比样本乙波动()
A.大
B.相等
C.小
D.无法确定答案:A32.设i为虚数单位,若=b+i(a,b∈R),则a,b的值为()
A.a=0,b=1
B.a=1,b=0
C.a=1,b=1
D.a=,b=-1答案:B33.某校现有高
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年城市轨道交通建设与维护合同
- 地源热泵合同模版
- 2024版光纤宽带网络建设与维护合同2篇
- 2024年度电气工程进度付款合同2篇
- 2024年度丙方物流服务提供合同标的甲方货物运输
- 二零二四年度博物馆布展材料环保检测合同
- 二零二四年度广告发布合同的广告内容、发布媒介与费用结算
- 二零二四年度版权购买与授权合同:音乐产业
- 二零二四年度高端设备制造技术引进合同
- 二零二四年餐饮行业竞争性谈判合同
- 2023年西安电力中心医院招聘考试真题
- 施工机械设备配置方案
- 【译林】八上英语专题02 短文首字母填空20篇
- 2024-2030年中国无氧铜杆铜丝行业运行状况发展趋势分析报告
- 《电气控制系统设计与装调》教案 项目五 任务一小车自动往返控制线路设计与安装(位置开关)
- 新教师培训课件
- 爱心公益慈善活动招商方案
- 2024年县水利局编外水利工程技术人员聘用合同
- 财务会计报表阅读报告(活页版)参考答案 案例四参考答案
- 2024-2025学年七年级英语上学期期中试卷(沪教五四制2024)(含答案)
- 人教版一年级上册数学期中考试试题及答案
评论
0/150
提交评论