2023年重庆工程职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年重庆工程职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年重庆工程职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年重庆工程职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年重庆工程职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年重庆工程职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知x1,x2,…,xn都是正数,且x1+x2+…+xn=1,求证:

++…+≥n2.答案:证明略解析:证明

++…+=(x1+x2+…+xn)(

++…+)≥=n2.2.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ______(结果用最简分数表示).答案:用随机变量ξ表示选出的志愿者中女生的人数,ξ可取0,1,2,当ξ=0时,表示没有选到女生;当ξ=1时,表示选到一个女生;当ξ=2时,表示选到2个女生,∴P(ξ=0)=C25C27=1021,P(ξ=1)=C15C12C27=1021,P(ξ=2)=C22C27=121,∴Eξ=0×1021+1×1021+2×121=47.故为:473.

圆ρ=(cosθ+sinθ)的圆心的极坐标是()

A.(1,)

B.(,)

C.(,)

D.(2,)

答案:A4.某品牌平板电脑的采购商指导价为每台2000元,若一次采购数量达到一定量,还可享受折扣.如图为某位采购商根据折扣情况设计的算法程序框图,若一次采购85台该平板电脑,则S=______元.答案:分析程序中各变量、各语句,其作用是:表示一次采购共需花费的金额,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数S=200×0.8?x,x>100200×0.9?x,50<x≤100200?x,0<x≤50的值,∵x=85,∴S=200×0.9×85=15300(元),故为:15300.5.下表为广州亚运会官方票务网站公布的几种球类比赛的门票价格,某球迷赛前准备1200元,预订15张下表中球类比赛的门票。比赛项目票价(元/场)足球

篮球

乒乓球100

80

60若在准备资金允许的范围内和总票数不变的前提下,该球迷想预订上表中三种球类比赛门票,其中篮球比赛门票数与乒乓球比赛门票数相同,且篮球比赛门票的费用不超过足球比赛门票的费用,求可以预订的足球比赛门票数。答案:解:设预订篮球比赛门票数与乒乓球比赛门票数都是n(n∈N*)张,则足球比赛门票预订(15-2n)张,由题意得解得由n∈N*,可得n=5,∴15-2n=5∴可以预订足球比赛门票5张。6.以下命题:

①二直线平行的充要条件是它们的斜率相等;

②过圆上的点(x0,y0)与圆x2+y2=r2相切的直线方程是x0x+y0y=r2;

③平面内到两定点的距离之和等于常数的点的轨迹是椭圆;

④抛物线上任意一点M到焦点的距离都等于点M到其准线的距离.

其中正确命题的标号是______.答案:①两条直线平行的充要条件是它们的斜率相等,且截距不等,故①不正确,②过点(x0,y0)与圆x2+y2=r2相切的直线方程是x0x+y0y=r2.②正确,③不正确,若平面内到两定点距离之和等于常数,如这个常数正好为两个点的距离,则动点的轨迹是两点的连线段,而不是椭圆;④根据抛物线的定义知:抛物线上任意一点M到焦点的距离都等于点M到其准线的距离.故④正确.故为:②④.7.已知椭圆(a>b>0)的焦点分别为F1,F2,b=4,离心率e=过F1的直线交椭圆于A,B两点,则△ABF2的周长为()

A.10

B.12

C.16

D.20答案:D8.如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列命题:

①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个;

②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且仅有2个;

③若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个.

上述命题中,正确命题的个数是()A.0B.1C.2D.3答案:①正确,此点为点O;②不正确,注意到p,q为常数,由p,q中必有一个为零,另一个非零,从而可知有且仅有4个点,这两点在其中一条直线上,且到另一直线的距离为q(或p);③正确,四个交点为与直线l1相距为p的两条平行线和与直线l2相距为q的两条平行线的交点;故选C.9.用秦九韶算法求多项式

在的值.答案:.解析:可根据秦九韶算法原理,将所给多项式改写,然后由内到外逐次计算即可.

而,所以有,,,,,.即.【名师指引】利用秦九韶算法计算多项式值关键是能正确地将所给多项式改写,然后由内到外逐次计算,由于后项计算需用到前项的结果,故应认真、细心,确保中间结果的准确性.10.三棱柱ABC-A1B1C1中,M、N分别是BB1、AC的中点,设,,=,则等于()

A.

B.

C.

D.答案:A11.某校对文明班的评选设计了a,b,c,d,e五个方面的多元评价指标,并通过经验公式样S=ab+cd+1e来计算各班的综合得分,S的值越高则评价效果越好,若某班在自测过程中各项指标显示出0<c<d<e<b<a,则下阶段要把其中一个指标的值增加1个单位,而使得S的值增加最多,那么该指标应为()A.aB.bC.cD.d答案:因a,b,cde都为正数,故分子越大或分母越小时,S的值越大,而在分子都增加1的前提下,分母越小时,S的值增长越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1个单位会使得S的值增加最多.故选C.12.已知圆柱的轴截面周长为6,体积为V,则下列关系式总成立的是()A.V≥πB.V≤πC.V≥18πD.V≤18π答案:设圆柱的底面半径为r,高为h,由题意得:4r+2h=6,即2r+h=3,∴体积为V=πr2h≤π[13(r+r+h)]2=π×(33)2=π当且仅当r=h时取等号,由此可得V≤π恒成立故选:B13.随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P()的值为()

A.

B.

C.

D.

答案:D14.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则CU(S∪T)等于()A.φB.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}答案:∵S∪T={1,3,5,6},∴CU(S∪T)={2,4,7,8}.故选B.15.已知不等式(a2+a+2)2x>(a2+a+2)x+8,其中x∈N+,使此不等式成立的x的最小整数值是______.答案:∵a2+a+2=(a+12)2+74>1,且x∈N+,∴由正整数指数函数在底数大于1时单调递增的性质,得2x>x+8,即x>8,∴使此不等式成立的x的最小整数值为9.故为:9.16.下面程序运行后,输出的值是()

A.42

B.43

C.44

D.45

答案:C17.四名男生三名女生排成一排,若三名女生中有两名相邻,但三名女生不能连排,则不同的排法数有()A.3600B.3200C.3080D.2880答案:由题意知本题需要利用分步计数原理来解,∵三名女生有且仅有两名相邻,∴把这两名女生看做一个元素,与另外一名女生作为两个元素,有C32A22种结果,把男生排列有A44,把女生在男生所形成的5个空位中排列有A52种结果,共有C32A22A44A52=2880种结果,故选D.18.命题“三角形中最多只有一个内角是直角”的结论的否定是()

A.有两个内角是直角

B.有三个内角是直角

C.至少有两个内角是直角

D.没有一个内角是直角答案:C19.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程.

在如图中纵轴表示离学校的距离,横轴表示出发后的时间,则如图中的四个图形中较符合该学生走法的是()A.

B.

C.

D.

答案:由题意可知:由于怕迟到,所以一开始就跑步,所以刚开始离学校的距离随时间的推移应该相对较快.而等跑累了再走余下的路程,则说明离学校的距离随时间的推移在后半段时间应该相对较慢.所以适合的图象为:故选B.20.点P(2,5)关于直线x+y=1的对称点的坐标是(

)。答案:(-4,-1)21.已知大于1的正数x,y,z满足x+y+z=33.

(1)求证:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.

(2)求1log3x+log3y+1log3y+log3z+1log3z+log3x的最小值.答案:(1)由柯西不等式得,(x2x+2y+3z+y2y+2z+3z+z2z+2x+3y)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27得:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32;(2)∵1log3x+log3y+1log3y+log3z+1log3z+log3x=1log3(xy)+1log3(yz)+1log3(zx),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx)),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx))≥9所以,(1log3(xy)+1log3(yz)+1log3(zx))≥9(log3(xy)+log3(yz)+log3(zx))=92log3(xyz),又∵33=x+y+z≥33xyz.∴xyz≤33.∴log3xyz≤32.得92log3xyz≥92×23=3所以,1log3x+log3y+1log3y+log3z+1log3z+log3x≥3当且仅当x=y=z=3时,等号成立.故所求的最小值是3.22.若数据x1,x2,…,xn的方差为3,数据ax1+b,ax2+b,…,axn+b的标准差为23,则实数a的值为______.答案:数据ax1+b,ax2+b,…,axn+b的方差是数据x1,x2,…,xn的方差的a2倍;则数据ax1+b,ax2+b,…,axn+b的方差为3a2,标准差为3a2=23解得a=±2故为:±223.若命题p的否命题是q,命题q的逆命题是r,则r是p的逆命题的()A.原命题B.逆命题C.否命题D.逆否命题答案:设命题p为“若k,则s”;则其否命题q是“若¬k,则¬s”;∴命题q的逆命题r是“若¬s,则¬k”,而p的逆命题为“若s,则k”,故r是p的逆命题的否命题.故选C.24.若向量且与的夹角余弦为则λ等于()

A.4

B.-4

C.

D.答案:C25.(几何证明选讲选做题)如图,梯形,,是对角线和的交点,,则

答案:1:6解析:,

,,∵,,而∴。26.如图,AD是圆内接三角形ABC的高,AE是圆的直径,AB=6,AC=3,则AE×AD等于

______.答案:∵AE是直径∴∠ABE=∠ADC=90°∵∠E=∠C∴△ABE∽△ADC∴ABAD=AEAC∴AE×AD=AB?AC=32故为32.27.平面向量与的夹角为60°,=(2,0),||=1,则|+2|()

A.

B.2

C.4

D.12答案:B28.从1,2,3,4,5中不放回地依次取2个数,事件A=“第一次取到的是奇数”,B=“第二次取到的是奇数”,则P(B|A)=()

A.

B.

C.

D.答案:D29.如图所示,面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,4),此四边形内任一点P到第i条边的距离记为hi(i=1,2,3,4),若a11=a22=a33=a44=k,则4

i=1(ihi)=2Sk.类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若S11=S22=S33=S44=K,则4

i=1(iHi)=()A.4VKB.3VKC.2VKD.VK答案:根据三棱锥的体积公式V=13Sh得:13S1H1+13S2H2+13S3H3+13S4H4=V,即S1H1+2S2H2+3S3H3+4S4H4=3V,∴H1+2H2+3H3+4H4=3VK,即4i=1(iHi)=3VK.故选B.30.若平面向量a与b的夹角为120°,a=(2,0),|b|=1,则|a+2b|=______.答案:∵|a+2b|=(a+2b)2=a

2+4a?b+4

b2=|a|2+4|a||b|cos<a,b>+4|b|2=22+4×2×1cos120°+4×1=2.故为:231.已知的单调区间;

(2)若答案:(1)(2)证明略解析:(1)对已知函数进行降次分项变形

,得,(2)首先证明任意事实上,而

.32.现有以下两项调查:①某校高二年级共有15个班,现从中选择2个班,检查其清洁卫生状况;②某市有大型、中型与小型的商店共1500家,三者数量之比为1:5:9.为了调查全市商店每日零售额情况,抽取其中15家进行调查.完成①、②这两项调查宜采用的抽样方法依次是()A.简单随机抽样法,分层抽样法B.系统抽样法,简单随机抽样法C.分层抽样法,系统抽样法D.系统抽样法,分层抽样法答案:从15个班中选择2个班,检查其清洁卫生状况;总体个数不多,而且差异不大,故可采用简单随机抽样的方法,1500家大型、中型与小型的商店的每日零售额存在较大差异,故可采用分层抽样的方法故完成①、②这两项调查宜采用的抽样方法依次是简单随机抽样法,分层抽样法故选A33.已知平面内一动点P到F(1,0)的距离比点P到y轴的距离大1.

(1)求动点P的轨迹C的方程;

(2)过点F的直线交轨迹C于A,B两点,交直线x=-1于M点,且MA=λ1AF,MB=λ2BF,求λ1+λ2的值.答案:(1)由题意知动点P到F(1,0)的距离与直线x=-1的距离相等,由抛物线定义知,动点P在以F(1,0)为焦点,以直线x=-1为准线的抛物线上,方程为y2=4x.(2)由题设知直线的斜线存在,设直线AB的方程为:y=k(x-1),设A(x1,y1),B(x2,y2),由y=k(x-1)y2=4x,得k2x2-2(k2+2)x+k2=0,∵x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得k2x2-2(k2+2)x+k2=0,∴x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得λ1=-1-2x2-1,同理λ2=-1-2x2-1,∴λ1+λ2=-2-2(1x1-1+1x2-1)=0.34.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()

A.若k2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病

B.从独立性检验可知,有99%的把握认为吸烟与患肺病有关时,我们说某人吸烟,那么他有99%的可能患有肺病

C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误

D.以上三种说法都不正确答案:D35.图为一个几何体的三视国科,尺寸如图所示,则该几何体的体积为()A.23+π6B.23+4πC.33+π6D.33+4π3答案:由图中数据,下部的正三棱柱的高是3,底面是一个正三角形,其边长为2,高为3,故其体积为3×12×2×3=33上部的球体直径为1,故其半径为12,其体积为4π3×(12)3=π6故组合体的体积是33+π6故选C36.点M的直角坐标为(-3,-1),则点M的极坐标为______.答案:∵M的直角坐标为(-3,-1),设M的极坐标为(ρ,θ),则ρ=(-3)2+(-1)2=2,又tanθ=33,∴θ=7π6,∴M的极坐标为(2,7π6).37.(坐标系与参数方程)

从极点O作直线与另一直线ρcosθ=4相交于点M,在OM上取一点P,使OM•OP=12.

(1)求点P的轨迹方程;

(2)设R为直线ρcosθ=4上任意一点,试求RP的最小值.答案:(1)设动点P的坐标为(ρ,θ),M的坐标为(ρ0,θ),则ρρ0=12.∵ρ0cosθ=4,∴ρ=3cosθ即为所求的轨迹方程.(2)由(1)知P的轨迹是以(32,0)为圆心,半径为32的圆,而直线l的解析式为x=4,所以圆与x轴的交点坐标为(3,0),易得RP的最小值为138.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有()

A.24种

B.48种

C.96种

D.144种答案:C39.能较好地反映一组数据的离散程度的是()

A.众数

B.平均数

C.标准差

D.极差答案:C40.“a=18”是“对任意的正数x,2x+ax≥1的”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:当“a=18”时,由基本不等式可得:“对任意的正数x,2x+ax≥1”一定成立,即“a=18”?“对任意的正数x,2x+ax≥1”为真命题;而“对任意的正数x,2x+ax≥1的”时,可得“a≥18”即“对任意的正数x,2x+ax≥1”?“a=18”为假命题;故“a=18”是“对任意的正数x,2x+ax≥1的”充分不必要条件故选A41.设椭圆C1的离心率为513,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为

______答案:根据题意可知椭圆方程中的a=13,∵ca=513∴c=5根据双曲线的定义可知曲线C2为双曲线,其中半焦距为5,实轴长为8∴虚轴长为225-16=6∴双曲线方程为x216-y29=1故为:x216-y29=142.已知二项分布满足X~B(6,23),则P(X=2)=______,EX=______.答案:∵X服从二项分布X~B(6,23)∴P(X=2)=C26(13)4(23)2=20243∵随机变量ξ服从二项分布ξ~B(6,23),∴期望Eξ=np=6×23=4故为:20243;443.已知a、b、c是实数,且a2+b2+c2=1,求2a+b+2c的最大值.答案:因为已知a、b、c是实数,且a2+b2+c2=1根据柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(22+1+22)≥(2a+b+2c)2故(2a+b+2c)2≤9,即2a+b+2c≤3即2a+b+2c的最大值为3.44.当太阳光线与水平面的倾斜角为60°时,要使一根长为2m的细杆的影子最长,则细杆与水平地面所成的角为()

A.15°

B.30°

C.45°

D.60°答案:B45.将一枚均匀硬币

随机掷20次,则恰好出现10次正面向上的概率为()

A.

B.

C.

D.答案:D46.定义xn+1yn+1=1011xnyn,n∈N*为向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点.已知OP1=(1,0),则OP2010的坐标为______.答案:由题意,xn+1=xnyn+1=xn+yn∴向量的横坐标不变,纵坐标构成以0为首项,1为公差的等差数列∴OP2010的坐标为(1,2009)故为(1,2009)47.已知0<k<4,直线l1:kx-2y-2k+8=0和直线l:2x+k2y-4k2-4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k值为______.答案:如图所示:直线l1:kx-2y-2k+8=0即k(x-2)-2y+8=0,过定点B(2,4),与y轴的交点C(0,4-k),直线l:2x+k2y-4k2-4=0,即2x-4+k2(y-4)=0,过定点(2,4),与x轴的交点A(2k2+2,0),由题意知,四边形的面积等于三角形ABD的面积和梯形OCBD的面积之和,故所求四边形的面积为12×4×(2k2+2-2)+2×(4-k+4)2=4k2-k+8,∴k=18时,所求四边形的面积最小,故为18.48.若关于x的不等式xa2-2xa-3<0在[-1,1]上恒成立,则实数a的取值范围是

A.[-1,1]

B.[-1,3]

C.(-1,1)

D.(-1,3)答案:D49.已知两条直线l1:y=x,l2:ax-y=0,其中a为实数,当这两条直线的夹角在(0,)内变动时,a的取值范围是(

A.(0,1)

B.

C.

D.答案:C50.已知点M在z轴上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,则点M的坐标是

______.答案:∵点M在z轴上,∴设点M的坐标为(0,0,z)又|MA|=|MB|,由空间两点间的距离公式得:12+02+(z-2)2=12+32+(z-1)2解得:z=-3.故点M的坐标是(0,0,-3).故为:(0,0,-3).第2卷一.综合题(共50题)1.设a、b为单位向量,它们的夹角为90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它们的夹角为90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10,|a+3b|=10.故选B.2.证明:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.答案:证明见解析:建立如图所示的直角坐标系.设,,其中,.则直线的方程为,直线的方程为.设底边上任意一点为,则到的距离;到的距离;到的距离.因为,所以,结论成立.3.平面向量的夹角为,则等于(

A.

B.3

C.7

D.79答案:A4.已知矩阵A=abcd,若矩阵A属于特征值3的一个特征向量为α1=11,属于特征值-1的一个特征向量为α2=1-1,则矩阵A=______.答案:由矩阵A属于特征值3的一个特征向量为α1=11可得abcd11=311,即a+b=3c+d=3;(4分)由矩阵A属于特征值2的一个特征向量为α2=1-1,可得abcd1-1=(-1)1-1,即a-b=-1c-d=1,(6分)解得a=1b=2c=2d=1,即矩阵A=1221.(10分)故为:1221.5.把函数y=ex的图像按向量=(2,3)平移,得到y=f(x)的图像,则f(x)=(

A.ex+2+3

B.ex+2-3

C.ex-2+3

D.ex-2-3答案:C6.给出下列结论:

(1)两个变量之间的关系一定是确定的关系;

(2)相关关系就是函数关系;

(3)回归分析是对具有函数关系的两个变量进行统计分析的一种常用方法;

(4)回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.

以上结论中,正确的有几个?()

A.1

B.2

C.3

D.4答案:A7.已知:a={2,-3,1},b={2,0,-2},c={-1,-2,0},r=2a-3b+c,

则r的坐标为______.答案:∵a=(2,-3,1),b=(2,0,-2),c=(-1,-2,0)∴r=2a-

3b+c=2(2,-3,1)-3(2,0,-2)+(-1,-2,0)=(4,-6,2)-(6,0,-6)+(-1,-2,0)=(-3,-8,8)故为:(-3,-8,8)8.三棱锥P-ABC中,M为BC的中点,以为基底,则可表示为()

A.

B.

C.

D.答案:D9.已知z1=5+3i,z2=5+4i,下列各式中正确的是()A.z1>z2B.z1<z2C.|z1|>|z2|D.|z1|<|z2|答案:∵z1=5+3i,z2=5+4i,∴z1与z2为虚数,故不能比较大小,可排除A,B;又|z1|=34,|z2|=52+42=41,∴|z1|<|z2|,可排除C.故选D.10.(1)若三条直线2x+3y+8=0,x-y-1=0和x+ky=0相交于一点,则k的值为?

(2)若α∈N,又三点A(α,0),B(0,α+4),C(1,3)共线,求α的值.答案:(1)由2x+3y+8=0x-y-1=0解得x=-1,y=-2,∴直线2x+3y+8=0和x-y-1=0的交点为(-1,-2).∵三条直线2x+3y+8=0,x-y-1=0和x+ky=0相交于一点,∴(-1,-2)在直线x+ky=0上,∴-1-2k=0,解得k=-12.(2)A、B、C三点共线,说明直线AB与直线AC的斜率相等∴a+4-00-a=3-01-a,解得:a=211.点M的直角坐标是(,-1),在ρ≥0,0≤θ<2π的条件下,它的极坐标是()

A.(2,)

B.(2,)

C.(,)

D.(,)答案:A12.若方程Ax2+By2=1表示焦点在y轴上的双曲线,则A、B满足的条件是()

A.A>0,且B>0

B.A>0,且B<0

C.A<0,且B>0

D.A<0,且B<0答案:C13.在平面几何中,四边形的分类关系可用以下框图描述:

则在①中应填入______;在②中应填入______.答案:由题意知①对应的四边形是一个有一组邻边相等的平行四边形,∴这里是一个菱形,②处的图形是一个有一条腰和底边垂直的梯形,∴②处是一个直角梯形,故为:菱形;直角梯形.14.已知A、B、C三点共线,A分的比为λ=-,A,B的纵坐标分别为2,5,则点C的纵坐标为()

A.-10

B.6

C.8

D.10答案:D15.若A(x,5-x,2x-1),B(1,x+2,2-x),当||取最小值时,x的值等于(

A.

B.

C.

D.答案:C16.曲线与坐标轴的交点是(

)A.B.C.D.答案:B解析:当时,,而,即,得与轴的交点为;当时,,而,即,得与轴的交点为17.若定义运算a⊕b=b,a<ba,a≥b则函数f(x)=2x⊕(12)x的值域为______(用区间表示).答案:由题意画出f(x)=2x?(12)x的图象(实线部分),由图可知f(x)的值域为[1,+∞).故为:[1,+∞).18.若2x+3y=1,求4x2+9y2的最小值,并求出最小值点.答案:由柯西不等式(4x2+9y2)(12+12)≥(2x+3y)2=1,∴4x2+9y2≥12.当且仅当2x?1=3y?1,即2x=3y时取等号.由2x=3y2x+3y=1得x=14y=16∴4x2+9y2的最小值为12,最小值点为(14,16).19.根据给出的空间几何体的三视图,用斜二侧画法画出它的直观图.答案:画法:(1)画轴如下图,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.(2)画圆台的两底面画出底面⊙O假设交x轴于A、B两点,在z轴上截取O′,使OO′等于三视图中相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′利用O′x′与O′y′画出底面⊙O′,设⊙O′交x′轴于A′、B′两点.(3)成图连接A′A、B′B,去掉辅助线,将被遮挡的部分要改为虚线,即得到给出三视图所表示的直观图.20.已知x2a2+y2b2=1(a>b>0),则a2+b2与(x+y)2的大小关系为

______.答案:由已知x2a2+y2b2=1(a>b>0)和柯西不等式的二维形式.得a2+b2=(a2+b2)(x2a2+y2b2)≥(a?xa+b?yb)2=(x+y)2.故为a2+b2≥(x+y)2.21.从2008名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从2008人中剔除8人,剩下的2000人再按系统抽样的方法抽取50人,则在2008人中,每人入选的概率()

A.不全相等

B.均不相等

C.都相等,且为

D.都相等,且为答案:C22.若矩阵满足下列条件:①每行中的四个数所构成的集合均为{1,2,3,4};②四列中有且只有两列的上下两数是相同的.则这样的不同矩阵的个数为()

A.24

B.48

C.144

D.288答案:C23.(选做题)方程ρ=cosθ与(t为参数)分别表示何种曲线(

)。答案:圆,双曲线24.化简:AB+CD+BC=______.答案:如图:AB+CD+BC=AB+BC+CD=AC+CD=AD.故为:AD.25.3i(1+i)2的虚部等于______.答案:3i(1+i)2=2,所以其虚部等于0,故为026.某校欲在一块长、短半轴长分别为10米与8米的椭圆形土地中规划一个矩形区域搞绿化,则在此椭圆形土地中可绿化的最大面积为()平方米.

A.80

B.160

C.320

D.160答案:B27.一口袋内装有5个黄球,3个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现10次时停止,停止时取球的次数ξ是一个随机变量,则P(ξ=12)=______.(填算式)答案:若ξ=12,则取12次停止,第12次取出的是红球,前11次中有9次是红球,∴P(ξ=12)=C119(38)9×(58)2×38=C911(38)10(58)2

故为C911(38)10(58)228.已知数列{an}中,a1=1,an+1=an+n,若利用如图所示的种序框图计算该数列的第10项,则判断框内的条件是()

A.n≤8?

B.n≤9?

C.n≤10?

D.n≤11?

答案:B29.如图,⊙O内切于△ABC的边于D,E,F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.

(1)求证:圆心O在直线AD上.

(2)求证:点C是线段GD的中点.答案:证明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CD=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分线∴圆心O在直线AD上.(5分)(II)连接DF,由(I)知,DH是⊙O的直径,∴∠DHF=90°,∴∠FDH+∠FHD=90°又∵∠G+∠FHD=90°∴∠FDH=∠G∵⊙O与AC相切于点F∴∠AFH=∠GFC=∠FDH∴∠GFC=∠G∴CG=CF=CD∴点C是线段GD的中点.(10分)30.设两个正态分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)的密度曲线如图所示,则有()

A.μ1<μ2,σ1<σ2

B.μ1<μ2,σ1>σ2

C.μ1>μ2,σ1<σ2

D.μ1>μ2,σ1>σ2

答案:A31.命题:“方程X2-2=0的解是X=±2”中使用逻辑联系词的情况是()A.没有使用逻辑连接词B.使用了逻辑连接词“且”C.使用了逻辑连接词“或”D.使用了逻辑连接词“非”答案:命题:“方程X2-2=0的解是X=±2”可以化为:“方程X2-2=0的解是X=2,或X=-2”故命题:“方程X2-2=0的解是X=±2”中使用逻辑联系词为:或故选C32.已知a=0.80.7,b=0.80.9,c=1.20.8,则a、b、c按从小到大的顺序排列为

______.答案:由指数函数y=0.8x知,∵0.7<0.9,∴0.80.9<0.80.7<1,即b<a,又c=1.20.8>1,∴b<a<c.b<a<c33.一个简单多面体的面都是三角形,顶点数V=6,则它的面数为______个.答案:∵已知多面体的每个面有三条边,每相邻两条边重合为一条棱,∴棱数E=32F,代入公式V+F-E=2,得F=2V-4.∵V=6,∴F=8,E=12,即多面体的面数F为8,棱数E为12.故为8.34.已知双曲线x2-y22=1,经过点M(1,1)能否作一条直线l,使直线l与双曲线交于A、B,且M是线段AB的中点,若存在这样的直线l,求出它的方程;若不存在,说明理由.答案:设过点M(1,1)的直线方程为y=k(x-1)+1或x=1(1)当k存在时有y=k(x-1)+1x2

-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0

(1)当直线与双曲线相交于两个不同点,则必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32

又方程(1)的两个不同的根是两交点A、B的横坐标∴x1+x2=2(k-k2)2-k2

又M(1,1)为线段AB的中点∴x1+x22=1

即k-k22-k2=1

k=2

∴k=2,使2-k2≠0但使△<0因此当k=2时,方程(1)无实数解故过点m(1,1)与双曲线交于两点A、B且M为线段AB中点的直线不存在.(2)当x=1时,直线经过点M但不满足条件,综上,符合条件的直线l不存在35.甲袋中装有3个白球和5个黑球,乙袋中装有4个白球和6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分混合后,再从乙袋中随机取出一个球放回甲袋中,则甲袋中白球没有减少的概率为()A.944B.2544C.3544D.3744答案:白球没有减少的情况有:①抓出黑球,抓入任意球,概率是:58.抓出白球,抓入白球,概率是38×511=1588,故所求事件的概率为58+1588=3544,故选C.36.向量a=i+

2j在向量b=3i+4j上的投影是______.答案:根据投影的定义可得:a在b方向上的投影为:|a|cos<a,b>=a?b|b|=1×3+2×452=115.故为:115.37.用反证法证明“如果a<b,那么“”,假设的内容应是()

A.

B.

C.且

D.或

答案:D38.设四边形ABCD中,有DC=12AB,且|AD|=|BC|,则这个四边形是

______.答案:由DC=12AB知四边形ABCD是梯形,又|AD|=|BC|,即梯形的对角线相等,所以,四边形ABCD是等腰梯形.故为:等腰梯形.39.在平面直角坐标系xoy中,曲线C1的参数方程为x=4cosθy=2sinθ(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ=2cosθ-4sinθ(ρ>0).

(Ⅰ)化曲线C1、C2的方程为普通方程,并说明它们分别表示什么曲线;

(Ⅱ)设曲线C1与x轴的一个交点的坐标为P(m,0)(m>0),经过点P作曲线C2的切线l,求切线l的方程.答案:(Ⅰ)曲线C1:x216+y24=1;曲线C2:(x-1)2+(y+2)2=5;(3分)曲线C1为中心是坐标原点,焦点在x轴上,长半轴长是4,短半轴长是2的椭圆;曲线C2为圆心为(1,-2),半径为5的圆(2分)(Ⅱ)曲线C1:x216+y24=1与x轴的交点坐标为(-4,0)和(4,0),因为m>0,所以点P的坐标为(4,0),(2分)显然切线l的斜率存在,设为k,则切线l的方程为y=k(x-4),由曲线C2为圆心为(1,-2),半径为5的圆得|k+2-4k|k2+1=5,解得k=3±102,所以切线l的方程为y=3±102(x-4)(3分)40.已知随机变量X的分布列是:(

)

X

4

a

9

10

P

0.3

0.1

b

0.2

且EX=7.5,则a的值为()

A.5

B.6

C.7

D.8答案:C41.已知F1(-2,0),F2(2,0)两点,曲线C上的动点P满足|PF1|+|PF2|

=32|F1F2|.

(Ⅰ)求曲线C的方程;

(Ⅱ)若直线l经过点M(0,3),交曲线C于A,B两点,且MA=12MB,求直线l的方程.答案:(Ⅰ)由已知可得|PF1|+|PF2|

=32|F1F2|

=6>|F1F2|=4,故曲线C是以F1,F2为焦点,长轴长为6的椭圆,其方程为x29+y25=1.(Ⅱ)方法一:设A(x1,y1),B(x2,y2),由条件可知A为MB的中点,则有x129+y125=1,

(1)x229+y225=1,(2)2x1=x2,

(3)2y1=y2+3.

(4)将(3)、(4)代入(2)得4x129+(2y1-3)25=1,整理为4x129+4y125-125y1+45=0.将(1)代入上式得y1=2,再代入椭圆方程解得x1=±35,故所求的直线方程为y=±53x+3.方法二:依题意,直线l的斜率存在,设其方程为y=kx+3.由y=kx+3x29+y25=1得(5+9k2)x2+54kx+36=0.令△>0,解得k2>49.设A(x1,y1),B(x2,y2),则x1+x2=-54k5+9k2,①x1x2=365+9k2.②因为MA=12MB,所以A为MB的中点,从而x2=2x1.将x2=2x1代入①、②,得x1=-18k5+9k2,x12=185+9k2,消去x1得(-18k5+9k2)2=185+9k2,解得k2=59,k=±53.所以直线l的方程为y=±53x+3.42.已知△ABC,A(-1,0),B(3,0),C(2,1),对它先作关于x轴的反射变换,再将所得图形绕原点逆时针旋转90°.

(1)分别求两次变换所对应的矩阵M1,M2;

(2)求△ABC在两次连续的变换作用下所得到△A′B′C′的面积.答案:(1)关于x轴的反射变换M1=100-1,绕原点逆时针旋转90°的变换M2=0-110.(4分)(2)∵M2•M1=0-110100-1=0110,(6分)△ABC在两次连续的变换作用下所得到△A′B′C′,∴A(-1,0),B(3,0),C(2,1)变换成:A′(0,-1),B′(0,3),C′(1,2),(9分)∴△A'B'C'的面积=12×4×1=2.(10分)43.已知向量与的夹角为120°,若向量,且,则=()

A.2

B.

C.

D.答案:C44.已知圆C的圆心为(1,1),半径为1.直线l的参数方程为x=2+tcosθy=2+tsinθ(t为参数),且θ∈[0,π3],点P的直角坐标为(2,2),直线l与圆C交于A,B两点,求|PA|•|PB||PA|+|PB|的最小值.答案:圆C的普通方程是(x-1)2+(y-1)2=1,将直线l的参数方程代入并化简得t2+2(sinθ+cosθ)t+1=0,由直线参数方程的几何意义得|PA|+|PB|=2|sinθ+cosθ|,|PA|•|PB|=1所以|PA|•|PB||PA|+|PB|=122|sin(θ+π4)|,θ∈[0,π3],当θ=π4时,|PA|•|PB||PA|+|PB|取得最小值122×1=24,所以|PA|•|PB||PA|+|PB|的最小值是24.45.已知|a|=1,|b|=2,<a,b>=60°,则|2a+b|=______.答案:∵|a|=1,|b|=2,<a,b>=60°,∴a?b=|a|×|b|cos60°=1由此可得(2a+b)2=4a2+4a?b+b2=4×12+4×1+22=12∴|2a+b|=(2a+b)2=23故为:2346.已知实数a,b满足等式2a=3b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;

⑤a=b.其中可能成立的关系式有()

A.①②③

B.①②⑤

C.①③⑤

D.③④⑤答案:B47.已知向量a=(0,-1,1),b=(4,1,0),|λa+b|=57且λ>0,则λ=______.答案:∵λa+b=λ(0,-1,1)+(4,1,0)=(4,1-λ,λ),|λa+b|=57,∴42+(1-λ)2+λ2=57,化为λ2-λ-20=0,又λ>0,解得λ=5.故为5.48.若命题P(n)对n=k成立,则它对n=k+2也成立,又已知命题P(2)成立,则下列结论正确的是()

A.P(n)对所有自然数n都成立

B.P(n)对所有正偶数n成立

C.P(n)对所有正奇数n都成立

D.P(n)对所有大于1的自然数n成立答案:B49.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()

A.

B.

C.

D.答案:D50.已知原点O(0,0),则点O到直线4x+3y+5=0的距离等于

______.答案:利用点到直线的距离公式得到d=|5|42+32=1,故为1.第3卷一.综合题(共50题)1.应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用()

①结论相反的判断,即假设

②原命题的条件

③公理、定理、定义等

④原结论

A.①②

B.①②④

C.①②③

D.②③答案:C2.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X表示这10个村庄中交通不方便的村庄数,则P(X=4)=______.(用数字表示)答案:由题意P(X=4)=C47×C68C1015=7×6×53×2×1×8×72×115×14×13×12×115×4×3×2×1=140429故为:1404293.如图,O是正方形ABCD对角线的交点,四边形OAED,OCFB都是正方形,在图中所示的向量中:

(1)与AO相等的向量有

______;

(2)写出与AO共线的向量有

______;

(3)写出与AO的模相等的向量有

______;

(4)向量AO与CO是否相等?答

______.答案:(1)与AO相等的向量有BF(2)与AO共线的向量有DE,CO,BF(3)与AO的模相等的向量有DE,

DO,AE,CO,CF,BF,BO(4)模相等,方向相反故AO与CO不相等4.已知抛物线C的参数方程为x=8t2y=8t(t为参数),设抛物线C的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足,如果直线AF的斜率为-3,那么|PF|=______.答案:把抛物线C的参数方程x=8t2y=8t(t为参数),消去参数化为普通方程为y2=8x.故焦点F(2,0),准线方程为x=-2,再由直线FA的斜率是-3,可得直线FA的倾斜角为120°,设准线和x轴的交点为M,则∠AFM=60°,且MF=p=4,∴∠PAF=180°-120°=60°.∴AM=MF•tan60°=43,故点A(0,43),把y=43代入抛物线求得x=6,∴点P(6,43),故|PF|=(6-2)2+(43-0)2=8,故为8.5.直线2x-3y+10=0的法向量的坐标可以是答案:C6.执行如图的程序框图,若p=15,则输出的n=______.答案:当n=1时,S=2,n=2;当n=2时,S=6,n=3;当n=3时,S=14,n=4;当n=4时,S=30,n=5;故最后输出的n值为5故为:57.已知函数f(x)=ax,(a>0,a≠1)的图象经过点P(12,12),则常数a的值为()A.2B.4C.12D.14答案:∵函数f(x)=ax,(a>0,a≠1)的图象经过点P(12,12),∴a12=12,?a=14.故选D.8.直线L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,则a的值为(

A.-3

B.2

C.-3或2

D.3或-2答案:A9.某学校为了调查高三年级的200名文科学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行调查;第二种由教务处对该年级的文科学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查,则这两种抽样的方法依次为()A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样答案:第一种由学生会的同学随机抽取20名同学进行调查;这是一种简单随机抽样,第二种由教务处对该年级的文科学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查,对于个体比较多的总体,采用系统抽样,故选D.10.设x,y∈R,且满足x2+y2=1,求x+y的最大值为()

A.

B.

C.2

D.1答案:A11.下列命题中为真命题的是(

A.平行直线的倾斜角相等

B.平行直线的斜率相等

C.互相垂直的两直线的倾斜角互补

D.互相垂直的两直线的斜率互为相反数答案:A12.如图,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB为直径作⊙O,连接OC,过点C作⊙O的切线CD,D为切点,若sin∠OCD=45,则直径AB=______.答案:连接OD,则OD⊥CD.∵∠ABC=90°,∴CD、CB为⊙O的两条切线.∴根据切线长定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故为16.13.由数字0、1、2、3、4可组成不同的三位数的个数是()

A.100

B.125

C.64

D.80答案:A14.若关于x,y的二元一次方程组m11mxy=m+12m至多有一组解,则实数m的取值范围是______.答案:关于x,y的二元一次方程组m11mxy=m+12m即二元一次方程组mx+y=m+1①x+my=2m②①×m-②得(m2-1)x=m(m-1)当m-1≠0时(m2-1)x=m(m-1)至多有一组解∴m≠1故为:(-∞,1)∪(1,+∞)15.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b,组成复数a+bi,其中虚数有()

A.36个

B.42个

C.30个

D.35个答案:A16.某市为研究市区居民的月收入调查了10000人,并根据所得数据绘制了样本的频率分布直方图(如图).

(Ⅰ)求月收入在[3000,3500)内的被调查人数;

(Ⅱ)估计被调查者月收入的平均数(同一组中的数据用该组区间的中点值作代表).

答案:(I)10000×0.0003×500=1500(人)∴月收入在[3000,3500)内的被调查人数1500人(II).x=1250×0.1+1750×0.2+2250×0.25+2750×0.25+3250×0.15+3750×0.05=2400∴估计被调查者月收入的平均数为240017.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确答案:一个算法必须在有限步内结束,简单的说就是没有死循环即算法的步骤必须有限故选C.18.已知两点P(4,-9),Q(-2,3),则直线PQ与y轴的交点分有向线段PQ的比为______.答案:直线PQ与y轴的交点的横坐标等于0,由定比分点坐标公式可得0=4+λ(-2)1+λ,解得λ=2,故直线PQ与y轴的交点分有向线段PQ的比为

λ=2,故为:2.19.某次考试,满分100分,按规定x≥80者为良好,60≤x<80者为及格,小于60者不及格,画出当输入一个同学的成绩x时,输出这个同学属于良好、及格还是不及格的程序框图.答案:第一步:输入一个成绩X(0≤X≤100)第二步:判断X是否大于等于80,若是,则输出良好;否则,判断X是否大于等于60,若是,则输出及格;否则,输出不及格;第三步:算法结束20.已知=(-3,2,5),=(1,x,-1),且=2,则x的值为()

A.3

B.4

C.5

D.6答案:C21.已知下列命题(其中a,b为直线,α为平面):

①若一条直线垂直于一个平面内无数条直线,则这条直线与这个平面垂直;

②若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面;

③若a∥α,b⊥α,则a⊥b;

④若a⊥b,则过b有且只有一个平面与a垂直.

上述四个命题中,真命题是()A.①,②B.②,③C.②,④D.③,④答案:①平面内无数条直线均为平行线时,不能得出直线与这个平面垂直,将“无数条”改为“所有”才正确;故①错误;②垂直于这条直线的直线与这个平面可以是任何的位置关系,有可能是平行、相交、线在面内,故②错误.③若a∥α,b⊥α,则必有a⊥b,正确;④若a⊥b,则过b有且只有一个平面与a垂直,显然正确.故选D.22.如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,,,

.则⊙O的半径为(

).

A.6

B.13

C.

D.答案:C解析:分析:延长AO交BC于D,接OB,根据AB=AC,O是等腰Rt△ABC的内心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.解答:解:延长AO交BC于D,连接OB,∵⊙O过B、C,∴O在BC的垂直平分线上,∵AB=AC,圆心O在等腰Rt△ABC的内部,∴AD⊥BC,BD=DC=3,AO平分∠BAC,∵∠BAC=90°,∴∠ADB=90°,∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=3,∴OD=3-1=2,由勾股定理得:OB==故选C.23.有一段“三段论”推理是这样的:对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f'(0)=0,所以,x=0是函数f(x)=x3的极值点.以上推理中()

A.大前提错误

B.小前提错误

C.推理形式错误

D.结论正确答案:A24.已知一种材料的最佳加入量在100g到200g之间,若用0.618法安排试验,则第一次试点的加入量可以是(

)g。答案:161.8或138.225.已知2a=3b=6c则有()

A.∈(2,3)

B.∈(3,4)

C.∈(4,5)

D.∈(5,6)答案:C26.设ABC是坐标平面上的一个三角形,P为平面上一点且AP=15AB+25AC,则△ABP的面积△ABC的面积=()A.12B.15C.25D.23答案:连接CP并延长交AB于D,∵P、C、D三点共线,∴AP=λAD+μAC且λ+μ=1设AB=kAD,结合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面积与△ABC有相同的底边AB高的比等于|PD|与|CD|之比∴△ABP的面积与△ABC面积之比为25故选:C27.“因为对数函数y=logax是增函数(大前提),而y=logx是对数函数(小前提),所以y=logx是增函数(结论).”上面推理的错误是()

A.大前提错导致结论错

B.小前提错导致结论错

C.推理形式错导致结论错

D.大前提和小前提都错导致结论错答案:A28.4个人各写一张贺年卡,集中后每人取一张别人的贺年卡,共有______种取法.答案:根据分类计数问题,可以列举出所有的结果,1甲乙互换,丙丁互换2甲丙互换,乙丁互换3甲丁互换,乙丙互换4甲要乙的乙要丙的丙要丁的丁要甲的5甲要乙的乙要丁的丙要甲的丁要丙的6甲要丙的丙要乙的乙要丁的丁要甲的7甲要丙的丙要丁的乙要丁的丁要甲的8甲要丁的丁要乙的乙要丙的丙要甲的9甲要丁的丁要丙的乙要甲的丙要乙的通过列举可以得到共有9种结果,故为:929.点M,N分别是曲线ρsinθ=2和ρ=2cosθ上的动点,则|MN|的最小值是______.答案:∵曲线ρsinθ=2和ρ=2cosθ分别为:y=2和x2+y2=2x,即直线y=2和圆心在(1,0)半径为1的圆.显然|MN|的最小值为1.故为:1.30.两封信随机投入A、B、C三个空邮箱,则A邮箱的信件数ξ的数学期望Eξ=______;答案:由题意知ξ的取值有0,1,2,当ξ=0时,即A邮箱的信件数为0,由分步计数原理知两封信随机投入A、B、C三个空邮箱,共有3×3种结果,而满足条件的A邮箱的信件数为0的结果数是2×2,由古典概型公式得到ξ=0时的概率,同理可得ξ=1时,ξ=2时,ξ=3时的概率p(ξ=0)=2×29=49,p(ξ=1)=C12C129=49,p(ξ=2)=19,∴Eξ=0×49+1×49+2×19=23故为:23.31.点P(x0,y0)在圆x2+y2=r2内,则直线x0x+y0y=r2和已知圆的公共点的个数为(

A.0

B.1

C.2

D.不能确定答案:A32.设复数z的实部是

12,且|z|=1,则z=______.答案:设复数z的虚部等于b,b∈z,由复数z的实部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故为:12±32i.33.如图,⊙O与⊙O′交于

A,B,⊙O的弦AC与⊙O′相切于点A,⊙O′的弦AD与⊙O相切于A点,则下列结论中正确的是()

A.∠1>∠2

B.∠1=∠2

C.∠1<∠2

D.无法确定

答案:B34.如图,PT是⊙O的切线,切点为T,直线PA与⊙O交于A、B两点,∠TPA的平分线分别交直线TA、TB于D、E两点,已知PT=2,PB=3,则PA=______,TEAD=______.答案:由题意,如图可得PT2=PB×PA又由已知PT=2,PB=3,故可得PA=433又TPA的平分线分别交直线TA、TB于D、E两点,可得∠TPE=∠APD又由弦切角定理知∠PTE=∠PAD故有△PET≈△PDA故有TE:AD=P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论