2023年滨州职业学院高职单招(数学)试题库含答案解析_第1页
2023年滨州职业学院高职单招(数学)试题库含答案解析_第2页
2023年滨州职业学院高职单招(数学)试题库含答案解析_第3页
2023年滨州职业学院高职单招(数学)试题库含答案解析_第4页
2023年滨州职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年滨州职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.命题“所以奇数的立方是奇数”的否定是()

A.所有奇数的立方不是奇数

B.不存在一个奇数,它的立方不是奇数

C.存在一个奇数,它的立方不是奇数

D.不存在一个奇数,它的立方是奇数答案:C2.已知点A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,α∈(0,π),则与的夹角为()

A.

B.

C.

D.答案:D3.1

甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为

(1)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;

(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.答案:见解析解析:解:(1)设A、B、C分别为甲、乙、丙三台机床各自加工的零件是一等品的事件①②③4.已知=(-3,2,5),=(1,x,-1),且=2,则x的值为()

A.3

B.4

C.5

D.6答案:C5.(坐标系与参数方程选做题)过点(2,π3)且平行于极轴的直线的极坐标方程为______.答案:法一:先将极坐标化成直角坐标表示,(2,π3)化为(1,3),过(1,3)且平行于x轴的直线为y=3,再化成极坐标表示,即ρsinθ=3.法二:在极坐标系中,直接构造直角三角形由其边角关系得方程ρsinθ=3.设A(ρ,θ)是直线上的任一点,A到极轴的距离AH=2sinπ3=3,直接构造直角三角形由其边角关系得方程ρsinθ=3.故为:ρsinθ=36.已知命题p:∀x∈R,x2-x+1>0,则命题¬p

是______.答案:∵命题p:∀x∈R,x2-x+1>0,∴命题p的否定是“∃x∈R,x2-x+1≤0”故为:∃x∈R,x2-x+1≤0.7.抛物线y2=4x,O为坐标原点,A,B为抛物线上两个动点,且OA⊥OB,当直线AB的倾斜角为45°时,△AOB的面积为______.答案:设直线AB的方程为y=x-m,代入抛物线联立得x2-(2m+4)x+m2=0,则x1+x2=2m+4,x1x2=m2,∴|x1-x2|=16m+16∵三角形的面积为S△AOB=|12my1-12my2|=12m(|x1-x2|)=12m16m+16;又因为OA⊥OB,设A(x1,2x1),B(x2,-2x2)所以2x1x1•-2x2x2=-1,求的m=4,代入上式可得S△AOB=12m16m+16=12×4×64+16=85故为:858.已知a=(1,0),b=(m,m)(m>0),则<a,b>=______.答案:∵b=(m,m)(m>0),∴b与第一象限的角平分线同向,且由原点指向远处,而a=(1,0)同横轴的正方向同向,∴<a,b>=45°,故为:45°9.直线l1:a1x+b1y+1=0直线l2:a2x+b2y+1=0交于一点(2,3),则经过A(a1,b1),B(a2,b2)两点的直线方程为______.答案:∵直线l1:a1x+b1y+1=0直线l2:a2x+b2y+1=0交于一点(2,3),∴2a1+3b1+1=0,2a2+3b2+2=0.∴A(a1,b1),B(a2,b2)两点都在直线2x+3y+1=0上,由于两点确定一条直线,因此经过A(a1,b1),B(a2,b2)两点的直线方程即为2x+3y+1=0.故为:2x+3y+1=0.10.已知M(x0,y0)是圆x2+y2=r2(r>0)内异于圆心的一点,则直线x0x+y0y=r2与此圆有何种位置关系?答案:圆心O(0,0)到直线x0x+y0y=r2的距离为d=r2x20+y20.∵P(x0,y0)在圆内,∴x20+y20<r.则有d>r,故直线和圆相离.11.在曲线(t为参数)上的点是()

A.(1,-1)

B.(4,21)

C.(7,89)

D.答案:A12.已知点M在z轴上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,则点M的坐标是

______.答案:∵点M在z轴上,∴设点M的坐标为(0,0,z)又|MA|=|MB|,由空间两点间的距离公式得:12+02+(z-2)2=12+32+(z-1)2解得:z=-3.故点M的坐标是(0,0,-3).故为:(0,0,-3).13.已知正方形ABCD的边长为1,=,=,=,则|++|等于(

A.0

B.2

C.

D.3答案:B14.

已知抛物线y2=2px(p>0)的焦点为F,过F的直线交y轴正半轴于点P,交抛物线于A,B两点,其中点A在第一象限,若,,,则μ的取值范围是()

A.[1,]

B.[,2]

C.[2,3]

D.[3,4]答案:B15.设P1(4,-3),P2(-2,6),且P在P1P2的延长线上,使||=2||,则点P的坐标

()

A.(-8,15)

B.(0,3)

C.(-,)

D.(1,)答案:A16.曲线C:x=t-2y=1t+1(t为参数)的对称中心坐标是______.答案:曲线C:x=t-2y=1t+1(t为参数)即y-1=1x+2,其对称中心为(-2,1).故为:(-2,1).17.设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为[0,],则P到曲线y=f(x)对称轴距离的取值范围为()

A.[0,]

B.[0,]

C.[0,||]

D.[0,||]答案:B18.若f(x)=x2,则对任意实数x1,x2,下列不等式总成立的是(

)

A.f()≤

B.f()<

C.f()≥

D.f()>答案:A19.如图是将二进制数11111(2)化为十进制数的一个程序框图,判断框内应填入的条件是()A.i≤5B.i≤4C.i>5D.i>4答案:首先将二进制数11111(2)化为十进制数,11111(2)=1×20+1×21+1×22+1×23+1×24=31,由框图对累加变量S和循环变量i的赋值S=1,i=1,i不满足判断框中的条件,执行S=1+2×S=1+2×1=3,i=1+1=2,i不满足条件,执行S=1+2×3=7,i=2+1=3,i不满足条件,执行S=1+2×7=15,i=3+1=4,i仍不满足条件,执行S=1+2×15=31,此时31是要输出的S值,说明i不满足判断框中的条件,由此可知,判断框中的条件应为i>4.故选D.20.设a>2,给定数列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求证:

(1)xn>2,且xn+1xn<1(n=1,2…);

(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:证明:(1)①当n=1时,∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12

-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.结论成立.②假设n=k时,结论成立,即2<xk+1<xk(k∈N+),则xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,综上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由条件x1=a≤3知不等式当n=1时成立假设不等式当n=k(k≥1)时成立当n=k+1时,由条件及xk>2知xk+1≤1+12k⇔x2k≤2(xk-1)(2+12k)⇔x2k-2(2+12k)xk+2(2+12k)≤0⇔(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及归纳假设知,上面最后一个不等式一定成立,所以不等式xk+1≤2+12k也成立,从而不等式xn≤2+12n-1对所有的正整数n成立21.(理)已知向量=(3,5,-1),=(2,2,3),=(4,-1,-3),则向量2-3+4的坐标为()

A.(16,0,-23)

B.(28,0,-23)

C.(16,-4,-1)

D.(0,0,9)答案:A22.如图所示,已知点P在正方体ABCD—A′B′C′D′的对角线

BD′上,∠PDA=60°.

(1)求DP与CC′所成角的大小;

(2)求DP与平面AA′D′D所成角的大小.答案:(1)DP与CC′所成的角为45°(2)DP与平面AA′D′D所成的角为30°解析:如图所示,以D为原点,DA为单位长度建立空间直角坐标系D—xyz.则=(1,0,0),=(0,0,1).连接BD,B′D′.在平面BB′D′D中,延长DP交B′D′于H.设="(m,m,1)"(m>0),由已知〈,〉=60°,由·=||||cos〈,〉,可得2m=.解得m=,所以=(,,1).(1)因为cos〈,〉==,所以〈,〉=45°,即DP与CC′所成的角为45°.(2)平面AA′D′D的一个法向量是=(0,1,0).因为cos〈,〉==,所以〈,〉=60°,可得DP与平面AA′D′D所成的角为30°.23.直线x=-2+ty=1-t(t为参数)被圆x=2+2cosθy=-1+2sinθ(θ为参数)所截得的弦长为______.答案:∵圆x=2+2cosθy=-1+2sinθ(θ为参数),消去θ可得,(x-2)2+(y+1)2=4,∵直线x=-2+ty=1-t(t为参数),∴x+y=-1,圆心为(2,-1),设圆心到直线的距离为d=|2-1+1|2=2,圆的半径为2∴截得的弦长为222-(2)2=22,故为22.24.若直线l经过点M(1,5),且倾斜角为2π3,则直线l的参数方程为______.答案:由于过点(a,b)倾斜角为α的直线的参数方程为x=a+t•cosαy=b+t•sinα(t是参数),∵直线l经过点M(1,5),且倾斜角为2π3,故直线的参数方程是x=1+t•cos2π3y=5+t•sin2π3即x=1-12ty=5+32t(t为参数).故为:x=1-12ty=5+32t(t为参数).25.已知△ABC∽△DEF,且相似比为3:4,S△ABC=2cm2,则S△DEF=______cm2.答案:∵△ABC∽△DEF,且相似比为3:4∴S△ABC:S△DEF=9:16∴S△DEF=329.故为:329.26.已知a、b是不共线的向量,AB=λa+b,AC=a+μb(λ,μ∈R),则A、B、C三点共线的充要条件是______.答案:由于AB,AC有公共点A,∴若A、B、C三点共线则AB与AC共线即存在一个实数t,使AB=tAC即λ=at1=μt消去参数t得:λμ=1反之,当λμ=1时AB=1μa+b此时存在实数1μ使AB=1μAC故AB与AC共线又由AB,AC有公共点A,∴A、B、C三点共线故A、B、C三点共线的充要条件是λμ=127.已知A(2,1,1),B(1,1,2),C(2,0,1),则下列说法中正确的是()A.A,B,C三点可以构成直角三角形B.A,B,C三点可以构成锐角三角形C.A,B,C三点可以构成钝角三角形D.A,B,C三点不能构成任何三角形答案:∵|AB|=2,|BC|=3,|AC|=1,∴|BC|2=|AC|2+|AB|2,∴A,B,C三点可以构成直角三角形,故选A.28.如图:在平行六面体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若则下列向量中与相等的向量是()

A.

B.

C.

D.

答案:A29.正方体的全面积为18cm2,则它的体积是()A.4cm3B.8cm3C.11272cm3D.33cm3答案:设正方体边长是acm,根据题意得6a2=18,解得a=3,∴正方体的体积是33cm3.故选D.30.利用独立性检验对两个分类变量是否有关系进行研究时,若有99.5%的把握说事件A和B有关系,则具体计算出的数据应该是()

A.K2≥6.635

B.K2<6.635

C.K2≥7.879

D.K2<7.879答案:C31.(几何证明选讲选做题)如图,⊙O中,直径AB和弦DE互相垂直,C是DE延长线上一点,连接BC与圆0交于F,若∠CFE=α(α∈(0,π2)),则∠DEB______.答案:∵直径AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四点共圆∴∠EFC=∠D=α∴∠DEB=α故为:α32.如图,椭圆C2x2a2+

y2b2=1的焦点为F1,F2,|A1B1|=7,S□B1A1B2A2=2S□B1F1B2F2.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设n为过原点的直线,l是与n垂直相交与点P,与椭圆相交于A,B两点的直线|op|=1,是否存在上述直线l使OA•OB=0成立?若存在,求出直线l的方程;并说出;若不存在,请说明理由.答案:(Ⅰ)由题意可知a2+b2=7,∵S□B1A1B2A2=2S□B1F1B2F2,∴a=2c.解得a2=4,b2=3,c2=1.∴椭圆C的方程为x24+y33=1.(Ⅱ)设A、B两点的坐标分别为A(x1,y1),B(x2,y2),假设使OA•OB=0成立的直线l存在.(i)当l不垂直于x轴时,设l的方程为y=kx+m,由l与n垂直相交于P点,且|OP|=1得|m|1+

k2=1,即m2=k2+1,由OA•OB=0得x1x2+y1y2=0,将y=kx+m代入椭圆得(3+4k2)x2+8kmx+(4m2-12)=0,x1+x2=-8km3+4k2,①,x1x2=4m2-123+4k2,②0=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=x1x2+k2x1x2+km(x1+x2)+m2把①②代入上式并化简得(1+k2)(4m2-12)-8k2m2+m2(3+4k2)=0,③将m2=1+k2代入③并化简得-5(k2+1)=0矛盾.即此时直线l不存在.(ii)当l垂直于x轴时,满足|OP|=1的直线l的方程为x=1或x=-1,由A、B两点的坐标为(1,32),(1,-32)或(-1,32),(-1,-32).当x=1时,OA•OB=(1,32)•

(1,-32)=-54≠0.当x=-1时,OA•OB=(-1,32)•

(-1,-32)=-54≠0.∴此时直线l也不存在.综上所述,使OA•OB=0成立的直线l不成立.33.函数f(x)=x2+ax+3,

(1)若f(1-x)=f(1+x),求a的值;

(2)在第(1)的前提下,当x∈[-2,2]时,求f(x)的最值,并说明当f(x)取最值时的x的值;

(3)若f(x)≥a恒成立,求a的取值范围.答案:(1)∵f(1+x)=f(1-x)∴y=f(x)的图象关于直线x=1对称∴-a2=1即a=-2(2)a=-2时,函数f(x)=x2-2x+3在区间[-2,1]上递减,在区间[1,2]上递增,∴当x=-2时,fmax(x)=f(-2)=11当x=1时,fmin(x)=f(1)=2(3)∵x∈R时,有x2+ax+3-a≥0恒成立,须△=a2-4(3-a)≤0,即a2+4a-12≤0,所以-6≤a≤2.34.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).试证:数列{xn}或者对任意自然数n都满足xn<xn+1,或者对任意自然数n都满足xn>xn+1.答案:证:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由数列{xn}的定义可知xn>0,(n=1,2,…)所以,xn+1-xn与1-xn2的符号相同.①假定x1<1,我们用数学归纳法证明1-xn2>0(n∈N)显然,n=1时,1-x12>0设n=k时1-xk2>0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,对一切自然数n都有1-xn2>0,从而对一切自然数n都有xn<xn+1②若x1>1,当n=1时,1-x12<0;设n=k时1-xk2<0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,对一切自然数n都有1-xn2<0,从而对一切自然数n都有xn>xn+135.如图,△ABC是圆的内接三角形,PA切圆于点A,PB交圆于点D.若∠ABC=60°,PD=1,BD=8,则∠PAC=______°,PA=______.答案:∵PD=1,BD=8,∴PB=PD+BD=9由切割线定理得PA2=PD?PB=9∴PA=3又∵PE=PA∴PE=3又∠PAC=∠ABC=60°故:60,336.函数y=()|x|的图象是()

A.

B.

C.

D.

答案:B37.在极坐标系中,曲线ρ=2cosθ所表示图形的面积为______.答案:将原极坐标方程为p=2cosθ,化成:p2=2ρcosθ,其直角坐标方程为:∴x2+y2=2x,是一个半径为1的圆,其面积为π.故填:π.38.(1)把二进制数化为十进制数;(2)把化为二进制数.答案:(1)45,(2)解析:(1)先把二进制数写成不同位上数字与2的幂的乘积之和的形式,再按照十进制的运算规则计算出结果;(2)根据二进制数“满二进一”的原则,可以用连续去除或所得商,然后取余数.(1)(2),,,,.所以..这种算法叫做除2余法,还可以用下面的除法算式表示;把上式中各步所得的余数从下到上排列,得到【名师指引】直接插入排序和冒泡排序是两种常用的排序方法,通过该例,我们对比可以发现,直接插入排序比冒泡排序更有效一些,执行的操作步骤更少一些..39.已知A(4,1,9),B(10,-1,6),则A,B两点间距离为______.答案:∵A(4,1,9),B(10,-1,6),∴A,B两点间距离为|AB|=(10-4)2+(-1-1)2+(6-9)2=7故为:740.直线4x-3y+5=0与直线8x-6y+5=0的距离为______.答案:直线4x-3y+5=0即8x-6y+10=0,由两平行线间的距离公式得:直线4x-3y+5=0(8x-6y+10=0)与直线8x-6y+5=0的距离是

|10-5|62+82=12,故为:12.41.已知随机变量ξ~N(3,22),若ξ=2η+3,则Dη=()

A.0

B.1

C.2

D.4答案:B42.已知P(B|A)=,P(A)=,则P(AB)=()

A.

B.

C.

D.答案:D43.如果抛物线y2=a(x+1)的准线方程是x=-3,那么这条抛物线的焦点坐标是()A.(3,0)B.(2,0)C.(1,0)D.(-1,0)答案:抛物线y2=a(x+1)可由抛物线y2=ax向左平移一个单位长度得到,因为抛物线y2=a(x+1)的准线方程是x=-3,所以抛物线y2=ax的准线方程是x=-2,且焦点坐标为(2,0),那么抛物线y2=a(x+1)的焦点坐标为(1,0).故选C.44.算法:第一步

x=a;第二步

若b>x则x=b;第三步

若c>x,则x=c;

第四步

若d>x,则x=d;

第五步

输出x.则输出的x表示()A.a,b,c,d中的最大值B.a,b,c,d中的最小值C.将a,b,c,d由小到大排序D.将a,b,c,d由大到小排序答案:x=a,若b>x,则b>a,x=b,否则x=a,即x为a,b中较大的值;若c>x,则x=c,否则x仍为a,b中较大的值,即x为a,b,c中较大的值;若d>x,则x=d,否则x仍为a,b,c中较大的值,即x为a,b,c中较大的值.故x为a,b,c,d中最大的数,故选A.45.已知两直线a1x+b1y+1=0和a2x+b2y+1=0的交点为P(2,3),求过两点Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直线方程.答案:∵P(2,3)在已知直线上,2a1+3b1+1=0,2a2+3b2+1=0.∴2(a1-a2)+3(b1-b2)=0,即b1-b2a1-a2=-23.∴所求直线方程为y-b1=-23(x-a1).∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0.46.今天为星期六,则今天后的第22010天是()A.星期一B.星期二C.星期四D.星期日答案:∵22010=8670=(7+1)670=C6700×7670×10+C6701×7669×11+C6702×7668×12+…+C6702010×70×1670∴22010除7的余数是1故今天为星期六,则今天后的第22010天是星期日故选D47.证明不等式的最适合的方法是()

A.综合法

B.分析法

C.间接证法

D.合情推理法答案:B48.设A、B、C、D是半径为r的球面上的四点,且满足AB⊥AC、AD⊥AC、AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值是[

]A、r2

B、2r2

C、3r2

D、4r2答案:B49.若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=12r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V=______.答案:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.故为:13R(S1+S2+S3+S4).50.某制药厂为了缩短培养时间,决定优选培养温度,试验范围定为29℃至50℃,现用分数法确定最佳温度,设第1,2,3次试验的温度分别为x1,x2,x3,若第2个试点比第1个试点好,则x3的值为(

)。答案:34℃或45℃第2卷一.综合题(共50题)1.若直线l经过点M(1,5),且倾斜角为2π3,则直线l的参数方程为______.答案:由于过点(a,b)倾斜角为α的直线的参数方程为x=a+t•cosαy=b+t•sinα(t是参数),∵直线l经过点M(1,5),且倾斜角为2π3,故直线的参数方程是x=1+t•cos2π3y=5+t•sin2π3即x=1-12ty=5+32t(t为参数).故为:x=1-12ty=5+32t(t为参数).2.已知向量与的夹角为120°,若向量,且,则=()

A.2

B.

C.

D.答案:C3.直线4x-3y+5=0与直线8x-6y+5=0的距离为______.答案:直线4x-3y+5=0即8x-6y+10=0,由两平行线间的距离公式得:直线4x-3y+5=0(8x-6y+10=0)与直线8x-6y+5=0的距离是

|10-5|62+82=12,故为:12.4.对某种电子元件进行寿命跟踪调查,所得样本频率分布直方图如图,由图可知:一批电子元件中,寿命在100~300小时的电子元件的数量与寿命在300~600小时的电子元件的数量的比大约是()A.12B.13C.14D.16答案:由于已知的频率分布直方图中组距为100,寿命在100~300小时的电子元件对应的矩形的高分别为:12000,32000则寿命在100~300小时的电子元件的频率为:100?(12000+32000)=0.2寿命在300~600小时的电子元件对应的矩形的高分别为:1400,1250,32000则寿命在300~600小时子元件的频率为:100?(1400+1250+32000)=0.8则寿命在100~300小时的电子元件的数量与寿命在300~600小时的电子元件的数量的比大约是0.2:0.8=14故选C5.

如图,已知平行六面体OABC-O1A1B1C1,点G是上底面O1A1B1C1的中心,且,则用

表示向量为(

A.

B.

C.

D.

答案:A6.当a≠0时,y=ax+b和y=bax的图象只可能是()

A.

B.

C.

D.

答案:A7.______称为向量;常用

______表示,记为

______,又可用小写字线表示为

______.答案:既有大小,又有方向的量叫做向量;表示方法:①常用有带箭头的线段来表示,记为有向线段AB,②又可用小写字线表示为:a,b,c…,故为:既有大小,又有方向的量;有带箭头的线段,有向线段AB,a,b,c….8.把函数y=ex的图像按向量=(2,3)平移,得到y=f(x)的图像,则f(x)=(

A.ex+2+3

B.ex+2-3

C.ex-2+3

D.ex-2-3答案:C9.函数y=ax+b与y=logbx且a>0,在同一坐标系内的图象是()A.

B.

C.

D.

答案:∵a>0,则函数y=ax+b为增函数,与y轴的交点为(0,b)当0<b<1时,函数y=ax+b与y轴的交点在原点和(0,1)点之间,y=logbx为减函数,D图满足要求;当b>1时,函数y=ax+b与y轴的交点在(0,1)点上方,y=logbx为增函数,不存在满足条件的图象;故选D10.如图是一个正三棱柱体的三视图,该柱体的体积等于()A.3B.23C.2D.33答案:根据长对正,宽相等,高平齐,可得底面正三角形高为3,三棱柱高为1所以正三角形边长为3sin60°=2,所以V=12×2×3×1=3,故选A.11.设,是互相垂直的单位向量,向量=(m+1)-3,=-(m-1),(+)⊥(-)则实数m为()

A.-2

B.2

C.-

D.不存在答案:A12.否定结论“至少有一个解”的说法中,正确的是()

A.至多有一个解

B.至少有两个解

C.恰有一个解

D.没有解答案:D13.设直线l与平面α相交,且l的方向向量为a,α的法向量为n,若<a,n>=,则l与α所成的角为()

A.

B.

C.

D.答案:C14.已知直线的参数方程为x=1+ty=3+2t.(t为参数),圆的极坐标方程为ρ=2cosθ+4sinθ.

(I)求直线的普通方程和圆的直角坐标方程;

(II)求直线被圆截得的弦长.答案:(I)直线的普通方程为:2x-y+1=0;圆的直角坐标方程为:(x-1)2+(y-2)2=5(4分)(II)圆心到直线的距离d=55,直线被圆截得的弦长L=2r2-d2=4305(10分)15.设点P(+,1)(t>0),则||(O为坐标原点)的最小值是()

A.

B.

C.5

D.3答案:A16.参数方程表示什么曲线?答案:见解析解析:解:显然,则即得,即17.与直线2x+y+1=0的距离为的直线的方程是()

A.2x+y=0

B.2x+y-2=0

C.2x+y=0或2x+y-2=0

D.2x+y=0或2x+y+2=0答案:D18.利用独立性检验对两个分类变量是否有关系进行研究时,若有99.5%的把握说事件A和B有关系,则具体计算出的数据应该是()

A.K2≥6.635

B.K2<6.635

C.K2≥7.879

D.K2<7.879答案:C19.已知P(4,-9),Q(-2,3)且Y轴与线段PQ交于M,则Q分的比为()

A.-2

B.-

C.

D.3答案:B20.有一批机器,编号为1,2,3,…,112,为调查机器的质量问题,打算抽取10台,问此样本若采用简单的随机抽样方法将如何获得?答案:本题可以采用抽签法来抽取样本,首先把该校学生都编上号001,002,112…用抽签法做112个形状、大小相同的号签,然后将这些号签放到同一个箱子里,进行均匀搅拌,抽签时,每次从中抽一个号签,连续抽取10次,就得到一个容量为10的样本.21.若随机变量ξ~N(2,9),则随机变量ξ的数学期望c=()

A.4

B.3

C.2

D.1答案:C22.设a=(-1,1),b=(x,3),c=(5,y),d=(8,6),且b∥d,(4a+d)⊥c.

(1)求b和c;

(2)求c在a方向上的射影;

(3)求λ1和λ2,使c=λ1a+λ2b.答案:(1)∵b∥d,∴6x-24=0.∴x=4.∴b=(4,3).∵4a+d=(4,10),(4a+d

)⊥c,∴5×4+10y=0.∴y=-2.∴c=(5,-2).(2)cos<a,c>=a•c|a|

|c|=-5-22•29=-75858,∴c在a方向上的投影为|c|cos<a,c>=-722.(3)∵c=λ1a+λ2b,∴5=-λ1+4λ2-2=λ1+3λ2,解得λ1=-237,λ2=37.23.设抛物线C:y2=3px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()

A.y2=4x或y2=8x

B.y2=2x或y2=8x

C.y2=4x或y2=16x

D.y2=2x或y2=16x答案:C24.一条直线的倾斜角的余弦值为32,则此直线的斜率为()A.3B.±3C.33D.±33答案:设直线的倾斜角为α,∵α∈[0,π),cosα=32∴α=π6因此,直线的斜率k=tanα=33故选:C25.求圆Cx=3+4cosθy=-2+4sinθ(θ为参数)的圆心坐标,和圆C关于直线x-y=0对称的圆C′的普通方程.答案:圆Cx=3+4cosθy=-2+4sinθ(θ为参数)

(x-3)2+(y+2)2=16,表示圆心坐标(3,-2),半径等于4的圆.C(3,-2)关于直线x-y=0对称的点C′(-2,3),半径还是4,故圆C′的普通方程(x+2)2+(y-3)2=16.26.如图,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=______.答案:如图,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则根据椭圆的对称性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余两对的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故为35.27.已知P(B|A)=,P(A)=,则P(AB)等于()

A.

B.

C.

D.答案:C28.某射击运动员在四次射击中分别打出了9,x,10,8环的成绩,已知这组数据的平均数为9,则这组数据的方差是______.答案:∵四次射击中分别打出了10,x,10,8环,这组数据的平均数为9,∴9+x+10+84,∴x=9,∴这组数据的方差是14(00+1+1)=12,故为:1229.在画两个变量的散点图时,下面哪个叙述是正确的()

A.预报变量x轴上,解释变量y轴上

B.解释变量x轴上,预报变量y轴上

C.可以选择两个变量中任意一个变量x轴上

D.可以选择两个变量中任意一个变量y轴上答案:B30.“所有10的倍数都是5的倍数,某数是10的倍数,则该数是5的倍数,”上述推理()

A.完全正确

B.推理形式不正确

C.错误,因为大小前提不一致

D.错误,因为大前提错误答案:A31.如图所示,O点在△ABC内部,D、E分别是AC,BC边的中点,且有OA+2OB+3OC=O,则△AEC的面积与△AOC的面积的比为()

A.2

B.

C.3

D.

答案:B32.不等式log32x-log3x2-3>0的解集为()

A.(,27)

B.(-∞,-1)∪(27,+∞)

C.(-∞,)∪(27,+∞)

D.(0,)∪(27,+∞)答案:D33.已知向量=(1,2),=(2,x),且=-1,则x的值等于()

A.

B.

C.

D.答案:D34.用反证法证明:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么b、c中至少有一个偶数时,下列假设正确的是()

A.假设a、b、c都是偶数

B.假设a、b、c都不是偶数

C.假设a、b、c至多有一个偶数

D.假设a、b、c至多有两个偶数答案:B35.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦的长为23,则a=______.答案:由已知x2+y2+2ay-6=0的半径为6+a2,由图可知6+a2-(-a-1)2=(3)2,解之得a=1.故为:1.36.将某班的60名学生编号为:01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是______.答案:用系统抽样抽出的5个学生的号码从小到大成等差数列,随机抽得的一个号码为04则剩下的四个号码依次是16、28、40、52.故为:16、28、40、5237.给出下列四个命题,其中正确的一个是()

A.在线性回归模型中,相关指数R2=0.80,说明预报变量对解释变量的贡献率是80%

B.在独立性检验时,两个变量的2×2列联表中对角线上数据的乘积相差越大,说明这两个变量没有关系成立的可能性就越大

C.相关指数R2用来刻画回归效果,R2越小,则残差平方和越大,模型的拟合效果越好

D.线性相关系数r的绝对值越接近于1,表明两个随机变量线性相关性越强答案:D38.将两枚质地均匀透明且各面分别标有1,2,3,4的正四面体玩具各掷一次,设事件A={两个玩具底面点数不相同},B={两个玩具底面点数至少出现一个2点},则P(B|A)=______.答案:设事件A={两个玩具底面点数不相同},包括以下12个基本事件:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件B={两个玩具底面点数至少出现一个2点},则包括以下6个基本事件:(1,2),(2,1),(2,3),(2,4),(3,2),(4,2).故P(B|A)=612=12.故为12.39.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|=()A.43B.8C.83D.16答案:抛物线的焦点F(2,0),准线方程为x=-2,直线AF的方程为y=-3(x-2),所以点A(-2,43)、P(6,43),从而|PF|=6+2=8故选B.40.已知直线l1:y=kx+(k<0=被圆x2+y2=4截得的弦长为,则l1与直线l2:y=(2+)x的夹角的大小是()

A.30°

B.45°

C.60°

D.75°答案:B41.在等腰直角三角形ABC中,若M是斜边AB上的点,则AM小于AC的概率为()A.14B.12C.22D.32答案:记“AM小于AC”为事件E.在线段AB上截取,则当点M位于线段AC内时,AM小于AC,将线段AB看做区域D,线段AC看做区域d,于是AM小于AC的概率为:ACAB=22.故选C.42.直线kx-y+1=3k,当k变动时,所有直线都通过定点

A.(0,0)

B.(0,1)

C.(3,1)

D.(2,1)答案:C43.一个试验要求的温度在69℃~90℃之间,用分数法安排试验进行优选,则第一个试点安排在(

)。(取整数值)答案:82°44.如图,已知OA、OB是⊙O的半径,且OA⊥OB,P是线段OA上一点,直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E,求证:∠OBP+∠AQE=45°.答案:证明:连接AB,则∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°45.给定点A(x0,y0),圆C:x2+y2=r2及直线l:x0x+y0y=r2,给出以下三个命题:

①当点A在圆C上时,直线l与圆C相切;

②当点A在圆C内时,直线l与圆C相离;

③当点A在圆C外时,直线l与圆C相交.

其中正确的命题个数是()

A.0

B.1

C.2

D.3答案:D46.用数学归纳法证明不等式:1n+1n+1+1n+2+…+1n2>1(n∈N*且n.1).答案:证明:(1)当n=2时,左边=12+13+14=1312>1,∴n=2时成立(2分)(2)假设当n=k(k≥2)时成立,即1k+1k+1+1k+2+…+1k2>1那么当n=k+1时,左边=1k+1+1k+2+1k+3+…+1(k+1)2=1k+1k+1+1k+2+1k+3+…+1k2+2k+1(k+1)2-1k>1+1k2+1+1k2+2+…+1(k+1)2-1k>1+(2k+1)•1(k+1)2-1k>1+k2-k-1k2+2k+1>1∴n=k+1时也成立(7分)根据(1)(2)可得不等式对所有的n>1都成立(8分)47.b1是[0,1]上的均匀随机数,b=3(b1-2),则b是区间______上的均匀随机数.答案:∵b1是[0,1]上的均匀随机数,b=3(b1-2)∵b1-2是[-2,-1]上的均匀随机数,∴b=3(b1-2)是[-6,-3]上的均匀随机数,故为:[-6,-3]48.由直角△ABC勾上一点D作弦AB的垂线交弦于E,交股的延长线于F,交外接圆于G,求证:EG为EA和EB的比例中项,又为ED和EF的比例中项.

答案:证明:连接GA、GB,则△AGB也是一个直角三角形,因为EG为直角△AGB的斜边AB上的高,所以,EG为EA和EB的比例中项,即EG2=EA?EB∵∠AFE=∠ABC,∴直角△AEF∽直角△DEB,EAEF=EDEB即EA?EB=ED?EF.又∵EG2=EA?EB,∴EG2=ED?EF(等量代换),故EG也是ED和EF的比例中项.49.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:x=22t+1y=22t,求直线l与曲线C相交所成的弦的弦长.答案:曲线C的极坐标方程是ρ=4cosθ化为直角坐标方程为x2+y2-4x=0,即(x-2)2+y2=4直线l的参数方程x=22t+1y=22t,化为普通方程为x-y-1=0,曲线C的圆心(2,0)到直线l的距离为12=22所以直线l与曲线C相交所成的弦的弦长24-12=14.50.在我市新一轮农村电网改造升级过程中,需要选一个电阻调试某村某设备的线路,但调试者手中必有阻值分别为0.5KΩ,1KΩ,1.3KΩ,2KΩ,3KΩ,5KΩ,5.5KΩ等七种阻值不等的定值电阻,他用分数法进行优选试验时,依次将电阻从小到大安排序号,如果第1个试点与第2个试点比较,第1个试点是一个好点,则第3个试点值的阻值为[

]A、1KΩ

B、1.3KΩ

C、5KΩ

D、1KΩ或5KΩ答案:C第3卷一.综合题(共50题)1.设双曲线的渐近线方程为2x±3y=0,则双曲线的离心率为______.答案:∵双曲线的渐近线方程是2x±3y=0,∴知焦点是在x轴时,ba=23,设a=3k,b=2k,则c=13k,∴e=133.焦点在y轴时ba=32,设a=2k,b=3k,则c=13k,∴e=132.故为:133或1322.已知复数z的模为1,且复数z的实部为13,则复数z的虚部为______.答案:设复数的虚部是b,∵复数z的模为1,且复数z的实部为13,∴(13)2+b2=1,∴b2=89,∴b=±223故为:±2233.已知G是△ABC的重心,O是平面ABC外的一点,若λOG=OA+OB+OC,则λ=______.答案:如图,正方体中,OA+OB+OC=OD=3OG,∴λ=3.故为3.4.刻画数据的离散程度的度量,下列说法正确的是()

(1)应充分利用所得的数据,以便提供更确切的信息;

(2)可以用多个数值来刻画数据的离散程度;

(3)对于不同的数据集,其离散程度大时,该数值应越小.

A.(1)和(3)

B.(2)和(3)

C.(1)和(2)

D.都正确答案:C5.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共线,向量c=2e1-9e2.问是否存在这样的实数λ、μ,使向量d=λa+μb与c共线?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d与c共线,则存在实数k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在这样的实数λ、μ,只要λ=-2μ,就能使d与c共线.6.已知A,B,C三点不共线,O为平面ABC外一点,若由向量OP=15OA+23OB+λOC确定的点P与A,B,C共面,那么λ=______.答案:由题意A,B,C三点不共线,点O是平面ABC外一点,若由向量OP=15OA+23OB+λOC确定的点P与A,B,C共面,∴15+23+λ=1解得λ=215故为:2157.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的假设为()

A.a,b,c都是奇数

B.a,b,c都是偶数

C.a,b,c中至少有两个偶数

D.a,b,c中至少有两个偶数或都是奇数答案:D8.如图,直线l1、l2、l3的斜率分别为k1、k2、k3,则必有()A.k1<k3<k2B.k3<k1<k2C.k1<k2<k3D.k3<k2<k1答案:设直线l1、l2、l3的倾斜角分别为α1,α2,α3.由已知为α1为钝角,α2>α3,且均为锐角.由于正切函数y=tanx在(0,π2)上单调递增,且函数值为正,所以tanα2>tanα3>0,即k2>k3>0.当α为钝角时,tanα为负,所以k1=tanα1<0.综上k1<k3<k2,故选A.9.已知关于的不等式的解集为,且,求的值答案:,,解析:用数形结合法,如图显然解集是,即,从而此时=与交点横坐标为5,从而纵坐标为4,将交点坐标代入可得所以,,10.72的正约数(包括1和72)共有______个.答案:72=23×32.∴2m?3n(0≤m≤3,0≤n≤2,m,n∈N)都是72的正约数.m的取法有4种,n的取法有3种,由分步计数原理共3×4个.故为:12.11.正态曲线下、横轴上,从均值到+∞的面积为______答案:由正态曲线的对称性特点知,曲线与x轴之间的面积为1,所以从均数到的面积为整个面积的一半,即50%.填:0.5.12.已知直线l:ax+by=1(ab>0)经过点P(1,4),则l在两坐标轴上的截距之和的最小值是______.答案:∵直线l:ax+by=1(ab>0)经过点P(1,4),∴a+4b=1,故a、b都是正数.故直线l:ax+by=1,此直线在x、y轴上的截距分别为1a、1b,则l在两坐标轴上的截距之和为1a+1b=a+4ba+a+4bb=5+4ba+ab≥5+24ba?ab=9,当且仅当4ba=ab时,取等号,故为9.13.命题“正数的绝对值等于它本身”的逆命题是______.答案:将命题“正数的绝对值等于它本身”改写为“若一个数是正数,则其绝对值等于它本身”,所以逆命题是“若一个数的绝对值等于它本身,则这个数是正数”,即“绝对值等于它本身的数是正数”.故为:“绝对值等于它本身的数是正数”.14.若直线x-y-1=0与直线x-ay=0的夹角为,则实数a等于()

A.

B.0

C.

D.0或答案:D15.某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30min抽取一包产品,称其重量,分别记录抽查数据如下:

甲:86、72、92、78、77;

乙:82、91、78、95、88

(1)这种抽样方法是哪一种?

(2)将这两组数据用茎叶图表示;

(3)将两组数据比较,说明哪个车间产品较稳定.答案:(1)因为间隔时间相同,故是系统抽样.(2)茎叶图如下:.(3)因为.x甲=15(86+72+92+78+77)=81,.x乙=15(82+92+78+95+88)=87,所以s甲2=15(52+92+92+72+42)=50.4,s乙2=15(52+52+92+82+12)=39.2,而s甲2>s乙2,所以乙车间产品较稳定.16.已知两组样本数据x1,x2,…xn的平均数为h,y1,y2,…ym的平均数为k,则把两组数据合并成一组以后,这组样本的平均数为()

A.

B.

C.

D.答案:B17.设定义域为[x1,x2]的函数y=f(x)的图象为C,图象的两个端点分别为A、B,点O为坐标原点,点M是C上任意一点,向量OA=(x1,y1),OB=(x2,y2),OM=(x,y),满足x=λx1+(1-λ)x2(0<λ<1),又有向量ON=λOA+(1-λ)OB,现定义“函数y=f(x)在[x1,x2]上可在标准k下线性近似”是指|MN|≤k恒成立,其中k>0,k为常数.根据上面的表述,给出下列结论:

①A、B、N三点共线;

②直线MN的方向向量可以为a=(0,1);

③“函数y=5x2在[0,1]上可在标准1下线性近似”;

④“函数y=5x2在[0,1]上可在标准54下线性近似”.

其中所有正确结论的番号为______.答案:由ON=λOA+(1-λ)OB,得ON-OB=λ(OA-OB),即BN=λBA故①成立;∵向量OA=(x1,y1),OB=(x2,y2),向量ON=λOA+(1-λ)OB,∴向量ON的横坐标为λx1+(1-λ)x2(0<λ<1),∵OM=(x,y),满足x=λx1+(1-λ)x2(0<λ<1),∴MN∥y轴∴直线MN的方向向量可以为a=(0,1),故②成立对于函数y=5x2在[0,1]上,易得A(0,0),B(1,5),所以M(1-λ,5(1-λ)2),N(1-λ,5(1-λ)),从而|MN|=52(1-λ)2-(1-λ))2=25[(λ-12)2+14]2≤54,故函数y=5x2在[0,1]上可在标准54下线性近似”,故④成立,③不成立,故为:①②④18.有5组(x,y)的统计数据:(1,2),(2,4),(4,5),(3,10),(10,12),要使剩下的数据具有较强的相关关系,应去掉的一组数据是()

A.(1,2)

B.(4,5)

C.(3,10)

D.(10,12)答案:C19.在空间直角坐标系中,已知A,B两点的坐标分别是A(2,3,5),B(3,1,4),则这两点间的距离|AB|=______.答案:∵A,B两点的坐标分别是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故为:6.20.为了了解某地母亲身高x与女儿身高Y的相关关系,随机测得10对母女的身高如下表所示:

母亲身x(cm)159160160163159154159158159157女儿身Y(cm)158159160161161155162157162156计算x与Y的相关系数r≈0.71,通过查表得r的临界值r0.05=0.632,从而有______的把握认为x与Y之间具有线性相关关系,因而求回归直线方程是有意义的.通过计算得到回归直线方程为y═34.92+0.78x,因此,当母亲的身高为161cm时,可以估计女儿的身高大致为______.答案:查对临界值表,由临界值r0.05=0.632,可得有95%的把握认为x与Y之间具有线性相关关系,回归直线方程为y=34.92+0.78x,因此,当x=161cm时,y=34.92+0.78x=34.92+0.78×161=161cm故为:95%,161cm.21.已知0<a<2,复数z的实部为a,虚部为1,则|z|的取值范围是()A.(1,5)B.(1,3)C.(1,5)D.(1,3)答案:|z|=a2+1,而0<a<2,∴1<|z|<5,故选C.22.已知f(x)=,求不等式x+(x+2)·f(x+2)≤5的解集。答案:解:原不等式等价于或解得或即故不等式的解集为。23.质地均匀的正四面体玩具的4个面上分别刻着数字1,2,3,4,将4个这样的玩具同时抛掷于桌面上.

(1)求与桌面接触的4个面上的4个数的乘积不能被4整除的概率;

(2)设ξ为与桌面接触的4个面上数字中偶数的个数,求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有两种情形;①4个数均为奇数,概率为P1=(12)4=116②4个数中有3个奇数,另一个为2,概率为P2=C34(12)3?14=18这两种情况是互斥的,故所求的概率为P=116+18=316(2)ξ为与桌面接触的4个面上数字中偶数的个数,由题意知ξ的可能取值是0,1,2,3,4,根据符合二项分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列为∵ξ服从二项分布B(4,12),∴Eξ=4×12=2.24.函数f(x)=-2x+1(x∈[-2,2])的最小、最大值分别为()A.3,5B.-3,5C.1,5D.5,-3答案:因为f(x)=-2x+1(x∈[-2,2])是单调递减函数,所以当x=2时,函数的最小值为-3.当x=-2时,函数的最大值为5.故选B.25.已知抛物线y2=4x上两定点A、B分别在对称轴两侧,F为焦点,且|AF|=2,|BF|=5,在抛物线的AOB一段上求一点P,使S△ABP最大,并求面积最大值.答案:不妨设点A在第一象限,B点在第四象限.如图.抛物线的焦点F(1,0),点A在第一象限,设A(x1,y1),y1>0,由|FA|=2得x1+1=2,x1=1,代入y2=4x中得y1=2,所以A(1,2),…(2分);同理B(4,-4),…(4分)由A(1,2),B(4,-4)得|AB|=(1-4)2+(2+4)2=35…(6分)直线AB的方程为y-2-4-2=x-14-1,化简得2x+y-4=0.…(8分)再设在抛物线AOB这段曲线上任一点P(x0,y0),且0≤x0≤4,-4≤y0≤2.则点P到直线AB的距离d=|2x0+y0-4|1+4=|2×y0

24+y0-4|5=|12(y0+1)2-92|5

…(9分)所以当y0=-1时,d取最大值9510,…(10分)所以△PAB的面积最大值为S=12×35×9510=274

…(11分)此时P点坐标为(14,-1).…(12分).26.复数,且A+B=0,则m的值是()

A.

B.

C.-

D.2答案:C27.对于各数互不相等的整数数组(i1,i2,i3,…in)

(n是不小于2的正整数),对于任意p,q∈1,2,3,…,n,当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,则数组(2,4,3,1)中的逆序数等于______.答案:由题意知当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,在数组(2,4,3,1)中逆序有2,1;4,3;4,1;3,1共有4对逆序数对,故为:4.28.有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.

(1)选修4-2:矩阵与变换

已知点A(1,0),B(2,2),C(3,0),矩阵M表示变换”顺时针旋转45°”.

(Ⅰ)写出矩阵M及其逆矩阵M-1;

(Ⅱ)请写出△ABC在矩阵M-1对应的变换作用下所得△A1B1C1的面积.

(2)选修4-4:坐标系与参数方程

过P(2,0)作倾斜角为α的直线l与曲线E:x=cosθy=22sinθ(θ为参数)交于A,B两点.

(Ⅰ)求曲线E的普通方程及l的参数方程;

(Ⅱ)求sinα的取值范围.

(3)(选修4-5

不等式证明选讲)

已知正实数a、b、c满足条件a+b+c=3,

(Ⅰ)求证:a+b+c≤3;

(Ⅱ)若c=ab,求c的最大值.答案:(1)(Ⅰ)M=cos(-45°)-sin(-45°)sin(-45°)

cos(-45°)=2222-2222∵矩阵M表示变换“顺时针旋转45°”∴矩阵M-1表示变换“逆时针旋转45°”∴M-1=cos45°-sin45°sin45°

cos45°=22-2222

22(Ⅱ)三角形ABC的面积S△ABC=12×(3-1)×2=2,由于△ABC在旋转变换下所得△A1B1C1与△ABC全等,故三角形的面积不变,即S△A1B1C1=2.(2)(Ⅰ)曲线E的普通方程为x2+2y2=1L的参数方程为x=2+tcosαy=tsinα(t为参数)

(Ⅱ)将L的参数方程代入由线E的方程得(1+sin2α)t2+(4cosα)t+3=0由△=(4cosα)2-4(1+sin2α)×3≥0得sin2α≤17∴0≤sinα≤77(3)(Ⅰ)证明:由柯西不等式得(a+b+c)2≤(a+b+c)(1+1+1)代入已知a+b+c=3,∴(a+b+c)2≤9a+b+c≤3当且仅当a=b=c=1,取等号.(Ⅱ)由a+b≥2ab得2ab+c≤3,若c=ab,则2c+c≤3,(c+3)(c-1)≤0,所以c≤1,c≤1,当且仅当a=b=1时,c有最大值1.29.如图,在△ABC中,BC边上的高所在的直线方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0,若点B的坐标为(1,2),求点A和点C的坐标.答案:点A为y=0与x-2y+1=0两直线的交点,∴点A的坐标为(-1,0).∴kAB=2-01-(-1)=1.又∵∠A的平分线所在直线的方程是y=0,∴kAC=-1.∴直线AC的方程是y=-x-1.而BC与x-2y+1=0垂直,∴kBC=-2.∴直线BC的方程是y-2=-2(x-1).由y=-x-1,y=-2x+4,解得C(5,-6).∴点A和点C的坐标分别为(-1,0)和(5,-6)30.以下四组向量中,互相平行的是.()

(1)=(1,2,1),=(1,-2,3);

(2)=(8,4,-6),=(4,2,-3);

(3)=(0,1,-1),=(0,-3,3);

(4)=(-3,2,0),=(4,-3,3).

A.(1)(2)

B.(2)(3)

C.(2)(4)

D.(1)(3)答案:B31.如图所示,面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,4),此四边形内任一点P到第i条边的距离记为hi(i=1,2,3,4),若a11=a22=a33=a44=k,则4

i=1(ihi)=2Sk.类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若S11=S22=S33=S44=K,则4

i=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论