2023年重庆传媒职业学院高职单招(数学)试题库含答案解析_第1页
2023年重庆传媒职业学院高职单招(数学)试题库含答案解析_第2页
2023年重庆传媒职业学院高职单招(数学)试题库含答案解析_第3页
2023年重庆传媒职业学院高职单招(数学)试题库含答案解析_第4页
2023年重庆传媒职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年重庆传媒职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.位于直角坐标原点的一个质点P按下列规则移动:质点每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为,向右移动的概率为,则质点P移动五次后位于点(1,0)的概率是()

A.

B.

C.

D.答案:D2.在空间直角坐标系0xyz中有两点A(2,5,1)和B(2,4,-1),则|AB|=______.答案:∵点A(2,5,1)和B(2,4,-1),∴AB=(0,-1,-2).∴|AB|=0+(-1)2+(-2)2=5.故为5.3.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()

A.内切

B.相交

C.外切

D.相离答案:B4.已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是()

A.圆

B.椭圆

C.双曲线

D.抛物线答案:B5.在平面直角坐标系xOy中,点P(x,y)是椭圆x23+y2=1上的一个动点,求S=x+y的最大值.答案:因椭圆x23+y2=1的参数方程为x=3cos?y=sin?(?为参数)故可设动点P的坐标为(3cos?,sin?),其中0≤?<2π.因此S=x+y=3cos?+sin?=2(32cos?+12sin?)=2sin(?+π3)所以,当?=π6时,S取最大值2.6.在统计中,样本的标准差可以近似地反映总体的()

A.平均状态

B.频率分布

C.波动大小

D.最大值和最小值答案:C7.函数f(x)=x2+ax+3,

(1)若f(1-x)=f(1+x),求a的值;

(2)在第(1)的前提下,当x∈[-2,2]时,求f(x)的最值,并说明当f(x)取最值时的x的值;

(3)若f(x)≥a恒成立,求a的取值范围.答案:(1)∵f(1+x)=f(1-x)∴y=f(x)的图象关于直线x=1对称∴-a2=1即a=-2(2)a=-2时,函数f(x)=x2-2x+3在区间[-2,1]上递减,在区间[1,2]上递增,∴当x=-2时,fmax(x)=f(-2)=11当x=1时,fmin(x)=f(1)=2(3)∵x∈R时,有x2+ax+3-a≥0恒成立,须△=a2-4(3-a)≤0,即a2+4a-12≤0,所以-6≤a≤2.8.方程x2+(m-2)x+5-m=0的两根都大于2,则m的取值范围是()

A.(-5,-4]

B.(-∞,-4]

C.(-∞,-2]

D.(-∞,-5)∪(-5,-4]答案:A9.下列各图形不是函数的图象的是()A.

B.

C.

D.

答案:由函数的概念,B中有的x,存在两个y与x对应,不符合函数的定义,而ACD均符合.故选B10.若过点A(4,0)的直线l与曲线(x-2)2+y2=1有公共点,则直线l的斜率的取值范围为______.答案:设直线l的方程为y=k(x-4),即kx-y-4k=0∵直线l与曲线(x-2)2+y2=1有公共点,∴圆心到直线l的距离小于等于半径即|2k-4k|k2+1≤1,解得-33≤

k≤33∴直线l的斜率的取值范围为[-33,33]故为[-33,33]11.在直角坐标系xOy中,直线l的参数方程为x=3-22ty=5+22t(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=25sinθ.

(I)求圆C的参数方程;

(II)设圆C与直线l交于点A,B,求弦长|AB|答案:(Ⅰ)∵ρ=25sinθ,∴ρ2=25ρsinθ…(1分)所以,圆C的直角坐标方程为x2+y2-25y=0,即x2+(y-5)2=5…(3分)所以,圆C的参数方程为x=5cosθy=5+5sinθ(θ为参数)

…(4分)(Ⅱ)将直线l的参数方程代入圆C的直角坐标方程,得(3-22t)2+(22t)2=5即t2-32t+4=0…(5分)设两交点A,B所对应的参数分别为t1,t2,则t1+t2=32t1t2=4…(7分)∴|AB|=|t1-t2|=(t1+t2)2-4t1t2=18-16=2…(8分)12.如图,菱形ABCD的对角线AC和BD相交于O点,E,F,G,H分别是AB,BC,CD,DA的中点,求证:E,F,G,H四个点在以O为圆心的同一个圆上.答案:连接OE,OF,OG,OH.∵四边形ABCD为菱形,∴AB=BC=CD=DA,且BD⊥AC.∵E、F、GH分别为AB、BC、CD、DA的中点,∴OE=OF=OG=OH=12AB,∴E、F、G、H四点在以O为圆心,12AB为半径的圆上.13.已知函数f(x)=ax2+(a+3)x+2在区间[1,+∞)上为增函数,则实数a的取值范围是______.答案:∵f(x)=ax2+(a+3)x+2,∴f′(x)=2ax+a+3,∵函数f(x)=ax2+x+1在区间[1,+∞)上为增函数,∴f′(x)=2ax+a+3≥0在区间[1,+∞)恒成立.∴a≥02a×1+a+3≥0,解得a≥0,故为:a≥0.14.已知向量a与向量b的夹角为120°,若向量c=a+b,且a⊥c,则|a||b|的值为______.答案:由题意可知,∵a⊥c,∴a?c=a?(a+b)=a2+a?b=0即|a|2+|a||b|cos120°=0,故|a|2=12|a||b|,故|a||b|=12.故为:1215.在(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是______.(用数字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是C31+C41+C51+…+C71=25故为:2516.直线y=2x与直线x+y=3的交点坐标是

______.答案:联立两直线方程得y=2xx+y=3,解得x=1y=2所以直线y=2x与直线x+y=3的交点坐标是(1,2)故为(1,2).17.已知f(x)=2x,g(x)=3x.

(1)当x为何值时,f(x)=g(x)?

(2)当x为何值时,f(x)>1?f(x)=1?f(x)<1?

(3)当x为何值时,g(x)>3?g(x)=3?g(x)<3?答案:(1)作出函数f(x),g(x)的图象,如图所示.∵f(x),g(x)的图象都过点(0,1),且这两个图象只有一个公共点,∴当x=0时,f(x)=g(x)=1.(2)由图可知,当x>0时,f(x)>1;当x=0时,f(x)=1;当x<0时,f(x)<1.(3)由图可知:当x>1时,g(x)>3;当x=1时,g(x)=3;当x<1时,g(x)<3.18.已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽试验,每次试验种一粒种子,假定某次试验种子发芽,则称该次试验是成功的,如果种子没有发芽,则称该次试验是失败的.

(1)第一个小组做了三次试验,求至少两次试验成功的概率;

(2)第二个小组进行试验,到成功了4次为止,求在第四次成功之前共有三次失败,且恰有两次连续失败的概率.答案:(1)(2)解析:(1)第一个小组做了三次试验,至少两次试验成功的概率是P(A)=·+=.(2)第二个小组在第4次成功前,共进行了6次试验,其中三次成功三次失败,且恰有两次连续失败,其中各种可能的情况种数为=12.因此所求的概率为P(B)=12×·=.19.不等式的解集是

)A.B.C.D.答案:B解析:当时,不等式成立;当时,不等式可化为,解得综上,原不等式解集为故选B20.向量a=i+

2j在向量b=3i+4j上的投影是______.答案:根据投影的定义可得:a在b方向上的投影为:|a|cos<a,b>=a?b|b|=1×3+2×452=115.故为:115.21.已知a、b、c为某一直角三角形的三条边长,c为斜边.若点(m,n)在直线ax+by+2c=0上,则m2+n2的最小值是______.答案:根据题意可知:当(m,n)运动到原点与已知直线作垂线的垂足位置时,m2+n2的值最小,由三角形为直角三角形,且c为斜边,根据勾股定理得:c2=a2+b2,所以原点(0,0)到直线ax+by+2c=0的距离d=|0+0+2c|a2+b2=2,则m2+n2的最小值为4.故为:4.22.数据:1,1,3,3的众数和中位数分别是()

A.1或3,2

B.3,2

C.1或3,1或3

D.3,3答案:A23.“a>2且b>2”是“a+b>4且ab>4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件答案:若a>2且b>2,则必有a+b>4且ab>4成立,故充分性易证若a+b>4且ab>4,如a=8,b=1,此时a+b>4且ab>4成立,但不能得出a>2且b>2,故必要性不成立由上证明知“a>2且b>2”是“a+b>4且ab>4”的充分不必要条件,故选A24.从直径AB的延长线上取一点C,过点C作该圆的切线,切点为D,若∠ACD的平分线交AD于点E,则∠CED的度数是()

A.30°

B.45°

C.60°

D.随点C的变化而变化答案:B25.已知0<k<4,直线l1:kx-2y-2k+8=0和直线l:2x+k2y-4k2-4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k值为______.答案:如图所示:直线l1:kx-2y-2k+8=0即k(x-2)-2y+8=0,过定点B(2,4),与y轴的交点C(0,4-k),直线l:2x+k2y-4k2-4=0,即2x-4+k2(y-4)=0,过定点(2,4),与x轴的交点A(2k2+2,0),由题意知,四边形的面积等于三角形ABD的面积和梯形OCBD的面积之和,故所求四边形的面积为12×4×(2k2+2-2)+2×(4-k+4)2=4k2-k+8,∴k=18时,所求四边形的面积最小,故为18.26.已知向量=(2,4,x),=(2,y,2),若||=6,

⊥,则x+y的值是()

A.-3或1

B.3或1

C.-3

D.1答案:A27.设函数f(x)=ax(a>0,a≠1),如果f(x1+x2+…+x2009)=8,那么f(2x1)×f(2x2)×…×f(2x2009)的值等于()A.32B.64C.16D.8答案:f(x1+x2+…+x2009)=8可得ax1+x2+…+x2009=8f(2x1)×f(2x2)×…×f(2x2009)=a2(x1+x2+…+x2009)=82=64故选B.28.已知四边形ABCD,

点E、

F、

G、

H分别是AB、BC、CD、DA的中点,

求证:

EF=HG.答案:证明:∵E、F、G、H分别是AB、BC、CD、DA的中点,∴HG=12AC,EF=12AC,∴EF=HG.29.如图,设P、Q为△ABC内的两点,且AP=25AB+15AC,AQ=23AB+14AC,则△ABP的面积与△ABQ的面积之比为()A.15B.45C.14D.13答案:设AM=25AB,AN=15AC则AP=AM+AN由平行四边形法则知NP∥AB

所以△ABP的面积△ABC的面积=|AN||AC|=15同理△ABQ的面积△ABC的面积=14故△ABP的面积△ABQ的面积=45为:45故选B.30.设双曲线的焦点在x轴上,两条渐近线为y=±12x,则双曲线的离心率e=______.答案:依题意可知ba=12,求得a=2b∴c=a2+b2=5b∴e=ca=52故为52.31.平行线3x-4y-8=0与6x-8y+3=0的距离为______.答案:6x-8y+3=0可化为3x-4y+32=0,故所求距离为|-8-32|32+(-4)2=1910,故为:191032.直线l1:x+3=0与直线l2:x+3y-1=0的夹角的大小为______.答案:由于直线l1:x+3=0的斜率不存在,故它的倾斜角为90°,直线l2:x+3y-1=0的斜率为-33,故它的倾斜角为150>,故这两条直线的夹角为60°,故为60°.33.从点A(2,-1,7)沿向量=(8,9,-12)的方向取线段长||=34,则B点坐标为()

A.(-9,-7,7)

B.(18,17,-17)

C.(9,7,-7)

D.(-14,-19,31)答案:B34.一个算法的流程图如图所示,则输出S的值为

.答案:根据程序框图,题意为求:s=1+2+3+4+5+6+7+8+9,计算得:s=45,故为:45.35.如图,F1,F2分别为椭圆x2a2+y2b2=1的左、右焦点,点P在椭圆上,△POF2是面积为3的正三角形,则b2的值是______.答案:∵△POF2是面积为3的正三角形,∴S=34|PF2|2=3,|PF2|=2.∴c=2,∵△PF1F2为直角三角形,∴a=3+1,故为23.36.已知△ABC的顶点坐标为A(3,4),B(-2,-1),C(4,5),D在BC上,且S△ABC=3S△ABD,则AD的长为______.答案:D在BC上,且S△ABC=3S△ABD,∴D点为BC边上的三等分点则D点分线段BC所成的比为12则易求出D点坐标为:x=-2+12×41+12y=-1+12×51+12∴x=0y=1故AD=32故为:3237.化简下列各式:

(1)AB+DF+CD+BC+FA=______;

(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故为:(1)0;(2)AC38.一张纸上画有一个半径为R的圆O和圆内一个定点A,且OA=a,折叠纸片,使圆周上某一点A′刚好与点A重合.这样的每一种折法,都留下一条折痕.当A′取遍圆周上所有点时,求所有折痕所在直线上点的集合.答案:对于⊙O上任意一点A′,连AA′,作AA′的垂直平分线MN,连OA′,交MN于点P,则OP+PA=OA′=R.由于点A在⊙O内,故OA=a<R.从而当点A′取遍圆周上所有点时,点P的轨迹是以O、A为焦点,OA=a为焦距,R(R>a)为长轴的椭圆C.而MN上任一异于P的点Q,都有OQ+QA=OQ+QA′>OA′,故点Q在椭圆C外,即折痕上所有的点都在椭圆C上及C外.反之,对于椭圆C上或外的一点S,以S为圆心,SA为半径作圆,交⊙O于A′,则S在AA′的垂直平分线上,从而S在某条折痕上.最后证明所作⊙S与⊙O必相交.1°

当S在⊙O外时,由于A在⊙O内,故⊙S与⊙O必相交;2°

当S在⊙O内时(例如在⊙O内,但在椭圆C外或其上的点S′),取过S′的半径OD,则由点S′在椭圆C外,故OS′+S′A≥R(椭圆的长轴).即S′A≥S′D.于是D在⊙S′内或上,即⊙S′与⊙O必有交点.于是上述证明成立.综上可知,折痕上的点的集合为椭圆C上及C外的所有点的集合.39.实数系的结构图如图所示,其中1、2、3三个方格中的内容分别为()

A.有理数、零、整数

B.有理数、整数、零

C.零、有理数、整数

D.整数、有理数、零

答案:B40.在图中,M、N是圆柱体的同一条母线上且位于上、下底面上的两点,若从M点绕圆柱体的侧面到达N,沿怎么样的路线路程最短?答案:沿圆柱体的母线MN将圆柱的侧面剪开辅平,得出圆柱的侧面展开图,从M点绕圆柱体的侧面到达N点,实际上是从侧面展开图的长方形的一个顶点M到达不相邻的另一个顶点N.而两点间以线段的长度最短.所以最短路线就是侧面展开图中长方形的一条对角线.如图所示.41.在复平面上,设点A,B,C对应的复数分别为i,1,4+2i,过A、B、C作平行四边形ABCD,则平行四边形对角线BD的长为______.答案:∵点A,B,C对应的复数分别为i,1,4+2i∴A(0,1),B(1,0),C(4,2)设D(x,y)∴AD=BC=(3,2)∴D(3,3)∴对角线BD的长度是4+9=13故为:1342.已知:正四棱柱ABCD—A1B1C1D1中,底面边长为2,侧棱长为4,E、F分别为棱AB、BC的中点.

(1)求证:平面B1EF⊥平面BDD1B1;

(2)求点D1到平面B1EF的距离.答案:(1)证明略(2)解析:(1)

建立如图所示的空间直角坐标系,则D(0,0,0),B(2,2,0),E(2,,0),F(,2,0),D1(0,0,4),B1(2,2,4).=(-,,0),=(2,2,0),=(0,0,4),∴·=0,·=0.∴EF⊥DB,EF⊥DD1,DD1∩BD=D,∴EF⊥平面BDD1B1.又EF平面B1EF,∴平面B1EF⊥平面BDD1B1.(2)

由(1)知=(2,2,0),=(-,,0),=(0,-,-4).设平面B1EF的法向量为n,且n=(x,y,z)则n⊥,n⊥即n·=(x,y,z)·(-,,0)=-x+y=0,n·=(x,y,z)·(0,-,-4)=-y-4z=0,令x=1,则y=1,z=-,∴n="(1,1,-")∴D1到平面B1EF的距离d===.43.方程|x|-1=2y-y2表示的曲线为()A.两个半圆B.一个圆C.半个圆D.两个圆答案:两边平方整理得:(|x|-1)2=2y-y2,化简得(|x|-1)2+(y-1)2=1,由|x|-1≥0得x≥1或x≤-1,当x≥1时,方程为(x-1)2+(y-1)2=1,表示圆心为(1,1)且半径为1的圆的右半圆;当x≤1时,方程为(x+1)2+(y-1)2=1,表示圆心为(-1,1)且半径为1的圆的右半圆综上所述,得方程|x|-1=2y-y2表示的曲线为为两个半圆故选:A44.设向量a=(32,sinθ),b=(cosθ,13),其中θ∈(0,π2),若a∥b,则θ=______.答案:若a∥b,则sinθcosθ=12,即2sinθcosθ=1,∴sin2θ=1,又θ∈(0,π2),∴θ=π4.故为:π4.45.已知点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点A(72,4),则|PA|+|PM|的最小值是()A.5B.92C.4D.AD答案:依题意可知焦点F(12,0),准线x=-12,延长PM交准线于H点.则|PF|=|PH||PM|=|PH|-12=|PA|-12|PM|+|PA|=|PF|+|PA|-12,我们只有求出|PF|+|PA|最小值即可.由三角形两边长大于第三边可知,|PF|+|PA|≥|FA|,①设直线FA与抛物线交于P0点,可计算得P0(3,94),另一交点(-13,118)舍去.当P重合于P0时,|PF|+|PA|可取得最小值,可得|FA|=194.则所求为|PM|+|PA|=194-14=92.故选B.46.抛物线y=x2的焦点坐标是()

A.(,0)

B.(0,)

C.(0,1)

D.(1,0)答案:C47.某学校为了调查高三年级的200名文科学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行调查;第二种由教务处对该年级的文科学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查,则这两种抽样的方法依次为()A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样答案:第一种由学生会的同学随机抽取20名同学进行调查;这是一种简单随机抽样,第二种由教务处对该年级的文科学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查,对于个体比较多的总体,采用系统抽样,故选D.48.已知直线l1:3x-y+2=0,l2:3x+3y-5=0,则直线l1与l2的夹角是______.答案:因为直线l1的斜率为3,故倾斜角为60°,直线l2的斜率为-3,倾斜角为120°,故两直线的夹角为60°,即两直线的夹角为π3,故为

π3.49.已知f(x)=,a≠b,

求证:|f(a)-f(b)|<|a-b|.答案:证明略解析:方法一

∵f(a)=,f(b)=,∴原不等式化为|-|<|a-b|.∵|-|≥0,|a-b|≥0,∴要证|-|<|a-b|成立,只需证(-)2<(a-b)2.即证1+a2+1+b2-2<a2-2ab+b2,即证2+a2+b2-2<a2-2ab+b2.只需证2+2ab<2,即证1+ab<.当1+ab<0时,∵>0,∴不等式1+ab<成立.从而原不等式成立.当1+ab≥0时,要证1+ab<,只需证(1+ab)2<()2,即证1+2ab+a2b2<1+a2+b2+a2b2,即证2ab<a2+b2.∵a≠b,∴不等式2ab<a2+b2成立.∴原不等式成立.方法二

∵|f(a)-f(b)|=|-|==,又∵|a+b|≤|a|+|b|=+<+,∴<1.∵a≠b,∴|a-b|>0.∴|f(a)-f(b)|<|a-b|.50.到两定点A(0,0),B(3,4)距离之和为5的点的轨迹是()

A.椭圆

B.AB所在直线

C.线段AB

D.无轨迹答案:C第2卷一.综合题(共50题)1.如图,AB是⊙O的直径,P是AB延长线上的一点.过P作⊙O的切线,切点为C,PC=23,若∠CAP=30°,则⊙O的直径AB=______.答案:连接BC,设圆的直径是x则三角形ABC是一个含有30°角的三角形,∴BC=12AB,三角形BPC是一个等腰三角形,BC=BP=12AB,∵PC是圆的切线,PA是圆的割线,∴PC2=PB?PC=12x?32x=34x2,∵PC=23,∴x=4,故为:42.已知三点A(1,2),B(2,-1),C(2,2),E,F为线段BC的三等分点,则AE•AF=______.答案:∵A(1,2),B(2,-1),C(2,2),∴AB=(1,-3),BC=(0,3),AE=AB+13BC=(1,-2),AF=AB+23BC=(1,-1),∴AE•AF=1×1+(-2)×(-1)=3.故为:33.为研究变量x和y的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程l1和l2,两人计算知.x相同,.y也相同,下列正确的是()A.l1与l2一定重合B.l1与l2一定平行C.l1与l2相交于点(.x,.y)D.无法判断l1和l2是否相交答案:∵两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,∴两组数据的样本中心点是(.x,.y)∵回归直线经过样本的中心点,∴l1和l2都过(.x,.y).故选C.4.如图,在空间直角坐标系中,已知直三棱柱的顶点A在x轴上,AB平行于y轴,侧棱AA1平行于z轴.当顶点C在y轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是()

A.该三棱柱主视图的投影不发生变化

B.该三棱柱左视图的投影不发生变化

C.该三棱柱俯视图的投影不发生变化

D.该三棱柱三个视图的投影都不发生变化

答案:B5.如图所示直角梯形ABCD中,∠A=90°,PA⊥面ABCD,AD||BC,AB=BC=a,AD=2a,与底面ABCD成300角.若AE⊥PD,E为垂足,PD与底面成30°角.

(1)求证:BE⊥PD;

(2)求异面直线AE与CD所成的角的大小.答案:为了计算方便不妨设a=1.(1)证明:根据题意可得:以A为原点,AB,AD,AP所在直线为坐标轴建立直角坐标系(如图)则A(0,0,0),B(1,0,0)D(0,2,0)P(0,0,233)AB•PD=(1,0,0)•(0,2,-233)=0又AE•PD=0∴AB⊥PD,AE⊥PD所以PD⊥面BEA,BE⊂面BEA,∴PD⊥BE(2)∵PA⊥面ABCD,PD与底面成30°角,∴∠PDA=30°过E作EF⊥AD,垂足为F,则AE=AD•sin30°=1,∠EAF=60°AF=12,EF=32∴E(0,12,32),于是AE=(0,12,32)又C(1,1,0),D(0,2,0),CD=(-1,1,0)则COSθ=AE•CD|AE||CD|=24∴AE与CD所成角的余弦值为24.6.已知球的表面积等于16π,圆台上、下底面圆周都在球面上,且下底面过球心,圆台的轴截面的底角为π3,则圆台的轴截面的面积是()A.9πB.332C.33D.6答案:设球的半径为R,由题意4πR2=16,R=2,圆台的轴截面的底角为π3,可得圆台母线长为2,上底面半径为1,圆台的高为3,所以圆台的轴截面的面积S=12(2+4)×3=33故选C7.若a1-i=1-bi,其中a,b都是实数,i是虚数单位,则|a+bi|=______.答案:a1-i=a(1+i)(1-i)(1+i)=a2+a2i=1-bi∴a=2,b=-1∴|a+bi|=a2+b2=5故为:5.8.椭圆的两个焦点坐标是()

A.(-3,5),(-3,-3)

B.(3,3),(3,-5)

C.(1,1),(-7,1)

D.(7,-1),(-1,-1)答案:B9.集合M={(x,y)|xy≤0,x,y∈R}的意义是()A.第二象限内的点集B.第四象限内的点集C.第二、四象限内的点集D.不在第一、三象限内的点的集合答案:∵xy≤0,∴xy<0或xy=0当xy<0时,则有x<0y>0或x>0y<0,点(x,y)在二、四象限,当xy=0时,则有x=0或y=0,点(x,y)在坐标轴上,故选D.10.为了了解某社区居民是否准备收看奥运会开幕式,某记者分别从社区的60~70岁,40~50岁,20~30岁的三个年龄段中的160,240,X人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x为()

A.90

B.120

C.180

D.200答案:D11.在平面直角坐标系xoy中,曲线C1的参数方程为x=4cosθy=2sinθ(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ=2cosθ-4sinθ(ρ>0).

(Ⅰ)化曲线C1、C2的方程为普通方程,并说明它们分别表示什么曲线;

(Ⅱ)设曲线C1与x轴的一个交点的坐标为P(m,0)(m>0),经过点P作曲线C2的切线l,求切线l的方程.答案:(Ⅰ)曲线C1:x216+y24=1;曲线C2:(x-1)2+(y+2)2=5;(3分)曲线C1为中心是坐标原点,焦点在x轴上,长半轴长是4,短半轴长是2的椭圆;曲线C2为圆心为(1,-2),半径为5的圆(2分)(Ⅱ)曲线C1:x216+y24=1与x轴的交点坐标为(-4,0)和(4,0),因为m>0,所以点P的坐标为(4,0),(2分)显然切线l的斜率存在,设为k,则切线l的方程为y=k(x-4),由曲线C2为圆心为(1,-2),半径为5的圆得|k+2-4k|k2+1=5,解得k=3±102,所以切线l的方程为y=3±102(x-4)(3分)12.已知圆的极坐标方程ρ=2cosθ,直线的极坐标方程为ρcosθ-2ρsinθ+7=0,则圆心到直线距离为

______.答案:由ρ=2cosθ⇒ρ2=2ρcosθ⇒x2+y2-2x=0⇒(x-1)2+y2=1,ρcosθ-2ρsinθ+7=0⇒x-2y+7=0,∴圆心到直线距离为:d=1-2×0+712+22=855.故为:855.13.设方程lgx+x=3的实数根为x0,则x0所在的一个区间是()A.(3,+∝)B.(2,3)C.(1,2)D.(0,1)答案:由lgx+x=3得:lgx=3-x.分别画出等式:lgx=3-x两边对应的函数图象:如图.由图知:它们的交点x0在区间(2,3)内,故选B.14.己知集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N*,x∈A,y∈B,使B中元素y=3x+1和A中的元素x对应,则a=______,k=______.答案:若x∈A,y∈B,使B中元素y=3x+1和A中的元素x对应,则当x=1时,y=4;当x=2时,y=7;当x=3时,y=10;当x=k时,y=3k+1;又由a∈N*,∴a4≠10,则a2+3a=10,a4=3k+1解得a=2,k=5故为:2,515.P是以F1,F2为焦点的椭圆上一点,过焦点F2作∠F1PF2外角平分线的垂线,垂足为M,则点M的轨迹是()

A.椭圆

B.圆

C.双曲线

D.双曲线的一支答案:B16.已知正整数指数函数f(x)的图象经过点(3,27),

(1)求函数f(x)的解析式;

(2)求f(5);

(3)函数f(x)有最值吗?若有,试求出;若无,说明原因.答案:(1)设正整数指数函数为f(x)=ax(a>0,a≠1,x∈N+),因为函数f(x)的图象经过点(3,27),所以f(3)=27,即a3=27,解得a=3,所以函数f(x)的解析式为f(x)=3x(x∈N+).(2)由f(x)=3x(x∈N+),可得f(5)=35=243.(3)∵f(x)的定义域为N+,且在定义域上单调递增,∴f(x)有最小值,最小值是f(1)=3;f(x)无最大值.解析:已知正整数指数函数f(x)的图象经过点(3,27),(1)求函数f(x)的解析式;(2)求f(5);(3)函数f(x)有最值吗?若有,试求出;若无,说明原因.17.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是()A.甲B.乙C.丙D.丁答案:若甲是获奖的歌手,则都说假话,不合题意.若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,不符合题意.若丁是获奖的歌手,则甲、丁、丙都说假话,乙说真话,不符合题意.故获奖的歌手是丙故先C18.参数方程为t为参数)表示的曲线是()

A.一条直线

B.两条直线

C.一条射线

D.两条射线答案:D19.已知α1,α2,…αn∈(0,π),n是大于1的正整数,求证:|sin(α1+α2+…+αn)|<sinα1+sinα2+…+sinαn.答案:证明:下面用数学归纳法证明(1)n=2时,|sin(α1+α2)|-|sinα1cosα2+cosα1sinα2|≤sinα1|cosα2|+|cosα1|•|sinα2|<sinα1+sinα2,所以n=2时成立.(2)假设n=k(k≥2)时成立,即|sin(α1+α2+Λ+αk)|<sinα1+sinα2+Λ+sinαk当n=k+1时,|sin(α1+α2+Λ+αk+1)|==|sinαk+1cos(α1+Λαk)+cosαk+1sin(α1+Λαk)|≤sinαk+1|cos(α1+Λ+αk)|+|cosαk+1|•|sin(α1+Λαk)|<sinαk+1+|sin(α1+Λαk)|<sinα1+sinα2+Λ+sinαk+1∴n=k+1时也成立.由(1)(2)得,原式成立.20.大熊猫活到十岁的概率是0.8,活到十五岁的概率是0.6,若现有一只大熊猫已经十岁了,则他活到十五岁的概率是()

A.0.8

B.0.75

C.0.6

D.0.48答案:B21.已知如下等式:12=1×2×36,12+22=2×3×56,12+22+32=3×4×76,…当n∈N*时,试猜想12+22+32+…+n2的值,并用数学归纳法给予证明.答案:由已知,猜想12+22+32+…+n2=n(n+1)(2n+1)6,下面用数学归纳法给予证明:(1)当n=1时,由已知得原式成立;(2)假设当n=k时,原式成立,即12+22+32+…+k2=k(k+1)(2k+1)6,那么,当n=k+1时,12+22+32+…+(k+1)2=k(k+1)(2k+1)6+(k+1)2=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6故n=k+1时,原式也成立.由(1)、(2)知12+22+32+…+n2=n(n+1)(2n+1)6成立.22.(文)椭圆的一个焦点与短轴的两端点构成一个正三角形,则该椭圆的离心率为()

A.

B.

C.

D.不确定答案:C23.以过椭圆+=1(a>b>0)的右焦点的弦为直径的圆与直线l:x=的位置关系是()

A.相交

B.相切

C.相离

D.不能确定答案:C24.点(2,-2)的极坐标为______.答案:∵点(2,-2)中x=2,y=-2,∴ρ=x2+y2=4+4=22,tanθ=yx=-1,∴取θ=-π4.∴点(2,-2)的极坐标为(22,-π4)故为(22,-π4).25.用辗转相除法或者更相减损术求三个数的最大公约数.答案:同解析解析:解:324=243×1+81

243=81×3+0

则324与243的最大公约数为81又135=81×1+54

81=54×1+27

54=27×2+0则81与135的最大公约数为27所以,三个数324、243、135的最大公约数为27.另法为所求。26.①平行向量一定相等;②不相等的向量一定不平行;③相等向量一定共线;④共线向量一定相等;⑤长度相等的向量是相等向量;⑥平行于同一个向量的两个向量是共线向量,其中正确的命题是______.答案:∵平行向量即为共线向量其定义是方向相同或相反;相等向量的定义是模相等、方向相同;①平行向量不一定相等;故错;②不相等的向量也可能不平行;故错;③相等向量一定共线;正确;④共线向量不一定相等;故错;⑤长度相等的向量方向相反时不是相等向量;故错;⑥平行于零向量的两个向量是不一定是共线向量,故错.其中正确的命题是③.故为:③.27.已知二阶矩阵A=2ab0属于特征值-1的一个特征向量为1-3,求矩阵A的逆矩阵.答案:由矩阵A属于特征值-1的一个特征向量为α1=1-3,可得2ab01-3=-1-3,得2-3a=-1b=3即a=1,b=3;

…(3分)解得A=2130,…(8分)∴A逆矩阵是A-1=dad-bc-bad-bc-cad-bcaad-bc=0131-23.28.若a=()x,b=x3,c=logx,则当x>1时,a,b,c的大小关系式()

A.a<b<c

B.c<b<a

C.c<a<b

D.a<c<b答案:C29.设O、A、B、C为平面上四个点,(

A.2

B.2

C.3

D.3答案:C30.椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一焦点.一水平放置的椭圆形台球盘,F1,F2是其焦点,长轴长2a,焦距为2c.一静放在F1点处的小球(半径忽略不计),受击打后沿直线运动(不与直线F1F2重合),经椭圆壁反弹后再回到点F1时,小球经过的路程是()

A.4c

B.4a

C.2(a+c)

D.4(a+c)答案:B31.某简单几何体的三视图如图所示,其正视图.侧视图.俯视图均为直角三角形,面积分别是1,2,4,则这个几何体的体积为()A.83B.43C.8D.4答案:由三视图知几何体是一个三棱锥,设出三棱锥的三条两两垂直的棱分别是x,y,z∴xy=2

①xz=4

②yz=8

③由①②得z=2y

④∴y=2∴以y为高的底面面积是2,∴三棱锥的体积是13×2×2=43故选B.32.参数方程中当t为参数时,化为普通方程为(

)。答案:x2-y2=133.在空间直角坐标系中,点P(2,-4,6)关于y轴对称点P′的坐标为P′(-2,-4,-6)P′(-2,-4,-6).答案:∵在空间直角坐标系中,点(2,-4,6)关于y轴对称,∴其对称点为:(-2,-4,-6),故为:(-2,-4,-6).34.若函数y=f(x)的定义域是[12,2],则函数y=f(log2x)的定义域为______.答案:由题意知12≤log2x≤2,即log22≤log2x≤log24,∴2≤x≤4.故为:[2,4].35.若关于x的不等式(1+k2)x≤k4+4的解集是M,则对任意实常数k,总有(

A.

B.

C.

D.,0∈M答案:A36.若矩阵M=1111,则直线x+y+2=0在M对应的变换作用下所得到的直线方程为______.答案:设直线x+y+2=0上任意一点(x0,y0),(x',y')是所得的直线上一点,[1

1][x']=[x0][1

1][y']=[y0]∴x′+y′=x0x′+y′=y0,∴代入直线x+y+2=0方程:(x'+y')+x′+y'+2=0得到I的方程x+y+1=0故为:x+y+1=0.37.在极坐标系中,过点p(3,)且垂直于极轴的直线方程为()

A.Pcosθ=

B.Psinθ=

C.P=cosθ

D.P=sinθ答案:A38.已知R为实数集,Q为有理数集.设函数f(x)=0,(x∈CRQ)1,(x∈Q),则()A.函数y=f(x)的图象是两条平行直线B.limx→∞f(x)=0或limx→∞f(x)=1C.函数f[f(x)]恒等于0D.函数f[f(x)]的导函数恒等于0答案:函数y=f(x)的图象是两条平行直线上的一些孤立的点,故A不正确;函数f(x)的极限只有唯一的值,左右极限不等,则该函数不存在极限,故B不正确;若x是无理数,则f(x)=0,f[f(x)]=f(0)=1,故C不正确;∵f[f(x)]=1,∴函数f[f(x)]的导函数恒等于0,故D正确;故选D.39.不等式的解集是(

A.

B.

C.

D.答案:D40.如图,已知OA、OB是⊙O的半径,且OA⊥OB,P是线段OA上一点,直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E,求证:∠OBP+∠AQE=45°.答案:证明:连接AB,则∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°41.如图,若直线l1,l2,l3的斜率分别为k1,k2,k3,则k1,k2,k3三个数从小到大的顺序依次是______.答案:由函数的图象可知直线l1,l2,l3的斜率满足k1<0<k3<k2所以k1,k2,k3三个数从小到大的顺序依次是k1,k3,k2故为:k1,k3,k2.42.若|a|=3、|b|=4,且a⊥b,则|a+b|=______.答案:∵|a|=3,|b|=4,且a⊥b,∴|a+b|=a2+2a?b+b2=9+0+16=5.故为:5.43.以下命题:

①两个共线向量是指在同一直线上的两个向量;

②共线的两个向量互相平行;

③共面的三个向量是指在同一平面内的三个向量;

④共面的三个向量是指平行于同一平面的三个向量.

其中正确命题的序号是______.答案:解①根据共面与共线向量的定义可知①错误.②根据共线向量的定义可知②正确.③根据共面向量的定义可知③错误.④根据共面向量的定义可知④正确.故为:②④.44.在平面直角坐标系xOy中,双曲线x24-y212=1上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是______答案:MFd=e=2,d为点M到右准线x=1的距离,则d=2,∴MF=4.故为445.直线x+1=0的倾斜角是______.答案:直线x+1=0与x轴垂直,所以直线的倾斜角为90°.故为:90°.46.函数y=ax的反函数的图象过点(9,2),则a的值为______.答案:依题意,点(9,2)在函数y=ax的反函数的图象上,则点(2,9)在函数y=ax的图象上将x=2,y=9,代入y=ax中,得9=a2解得a=3故为:3.47.已知l∥α,且l的方向向量为(2,-8,1),平面α的法向量为(1,y,2),则y=______.答案:∵l∥α,∴l的方向向量(2,-8,1)与平面α的法向量(1,y,2)垂直,∴2×1-8×y+2=0,解得y=12.故为12.48.如图,F1,F2分别为椭圆x2a2+y2b2=1的左、右焦点,点P在椭圆上,△POF2是面积为3的正三角形,则b2的值是______.答案:∵△POF2是面积为3的正三角形,∴S=34|PF2|2=3,|PF2|=2.∴c=2,∵△PF1F2为直角三角形,∴a=3+1,故为23.49.如图,在半径为7的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为______.答案:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP•1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半径为7,则圆心O到弦CD的距离为d=r2-(CD2)2=7-(52)2=32.故为:32.50.已知四边形ABCD中,AB=12DC,且|AD|=|BC|,则四边形ABCD的形状是______.答案:∵AB=12DC,∴AB∥DC,且|AB|=12|DC|,即线段AB平行于线段CD,且线段AB长度是线段CD长度的一半∴四边形ABCD为以AB为上底、CD为下底的梯形,又∵|AD|=|BC|,∴梯形ABCD的两腰相等,因此四边形ABCD是等腰梯形.故为:等腰梯形第3卷一.综合题(共50题)1.已知函数f(x)=x2+(a2-1)x+(a-2)的一个零点比1大,一个零点比1小,则实数a的取值范围______.答案:∵函数f(x)=x2+(a2-1)x+(a-2)的一个零点比1大,一个零点比1小∴f(1)<0∴1+a2-1+a-2<0∴a2+a-2<0∴-2<a<1∴实数a的取值范围为(-2,1)故为:(-2,1)2.过P(-1,1),Q(3,9)两点的直线的斜率为(

A.2

B.

C.4

D.答案:A3.在平面直角坐标系xOy中,点P(x,y)是椭圆x23+y2=1上的一个动点,求S=x+y的最大值.答案:因椭圆x23+y2=1的参数方程为x=3cos?y=sin?(?为参数)故可设动点P的坐标为(3cos?,sin?),其中0≤?<2π.因此S=x+y=3cos?+sin?=2(32cos?+12sin?)=2sin(?+π3)所以,当?=π6时,S取最大值2.4.已知点M的极坐标为,下列所给四个坐标中能表示点M的坐标是()

A.

B.

C.

D.答案:D5.证明空间任意无三点共线的四点A、B、C、D共面的充分必要条件是:对于空间任一点O,存在实数x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.答案:(必要性)依题意知,B、C、D三点不共线,则由共面向量定理的推论知:四点A、B、C、D共面⇔对空间任一点O,存在实数x1、y1,使得OA=OB+x1BC+y1BD=OB+x1(OC-OB)+y1(OD-OB)=(1-x1-y1)OB+x1OC+y1OD,取x=1-x1-y1、y=x1、z=y1,则有OA=xOB+yOC+zOD,且x+y+z=1.(充分性)对于空间任一点O,存在实数x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.所以x=1-y-z得OA=(1-y-z)OB+yOC+zOD.OA=OB+yBC+zBD,即:BA=yBC+zBD,所以四点A、B、C、D共面.所以,空间任意无三点共线的四点A、B、C、D共面的充分必要条件是:对于空间任一点O,存在实数x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.6.若点M是△ABC的重心,则下列向量中与AB共线的是______.(填写序号)

(1)AB+BC+AC

(2)AM+MB+BC

(3)AM+BM+CM

(4)3AM+AC.答案:对于(1)AB+BC+AC=2AC不与AB共线对于(2)AM+MB+BC=AB+BC=AC不与AB对于(3)AM+BM+CM=13(AB+AC)+13(BA+BC)+13(CA+CB)=0与AB对于(4)3AM+AC=AB+AC+AC不与AB故为:(3)7.化简的结果是()

A.aB.C.a2D.答案:B解析:分析:指数函数的性质8.以下坐标给出的点中,在曲线x=sin2θy=sinθ+cosθ上的点是()A.(12,-2)B.(2,3)C.(-34,12)D.(1,3)答案:把曲线x=sin2θy=sinθ+cosθ消去参数θ,化为普通方程为y2=1+x(-1≤x≤1),结合所给的选项,只有C中的点在曲线上,故选C.9.(坐标系与参数方程选做题)在极坐标系中,点M(ρ,θ)关于极点的对称点的极坐标是______.答案:由点的极坐标的意义可得,点M(ρ,θ)关于极点的对称点到极点的距离等于ρ,极角为π+θ,故点M(ρ,θ)关于极点的对称点的极坐标是(ρ,π+θ),故为(ρ,π+θ).10.已知正方形的边长为2,AB=a,BC=b,AC=c,则|a+b+c|=()A.0B.2C.2D.4答案:由题意可得:AB+BC=AC,所以c=a+b,所以|a+b+c|=2|c|.因为正方形的边长为2,所以|AC|=|c|=2,所以|a+b+c|=2|c|=4.故选D.11.设P、Q为两个非空实数集合,定义集合P+Q={x|x=a+b,a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是______.答案:∵a∈P,b∈Q,∴a可以为0,2,5三个数,b可以为1,2,6三个数,∴x=0+1=1,x=0+2=2,x=0+6=6,x=2+1=3,x=2+2=4,x=2+6=8,x=5+1=6,x=5+2=7,x=5+6=11,∴P+Q={x|x=a+b,a∈P,b∈Q}={1,2,3,4,6,7,8,11},有8个元素.故为8.12.已知变量a,b已被赋值,要交换a、b的值,应采用的算法是()

A.a=b,b=a

B.a=c,b=a,c=b

C.a=c,b=a,c=a

D.c=a,a=b,b=c答案:D13.在复平面内,复数z=sin2+icos2对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案:∵sin2>0,cos2<0,∴z=sin2+icos2对应的点在第四象限,故选D.14.若把A、B、C、D、E、F、G七人排成一排,则A、B必须相邻,且C、D不能相邻的概率是______(结果用数值表示).答案:把AB看成一个整体,CD不能相邻,就用插空法,则有A22A44A25种方法把A、B、C、D、E、F、G七人排成一排,随便排的种数A77所以概率为A22A44A25A77=421故为:421.15.(几何证明选讲)如图,点A、B、C都在⊙O上,过点C的切线交AB的延长线于点D,若AB=5,BC=3,CD=6,则线段AC的长为______.答案:∵过点C的切线交AB的延长线于点D,∴DC是圆的切线,DBA是圆的割线,根据切割线定理得到DC2=DB?DA,∵AB=5,CD=6,∴36=DB(DB+5)∴DB=4,由题意知∠D=∠D,∠BCD=∠A∴△DBC∽△DCA,∴DCDA=BCCA∴AC=3×96=4.5,故为:4.516.执行下列程序后,输出的i的值是()

A.5

B.6

C.10

D.11答案:D17.用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为()

A.b都能被3整除

B.b都不能被3整除

C.b不都能被3整除

D.a不能被3整除答案:B18.已知两组样本数据x1,x2,…xn的平均数为h,y1,y2,…ym的平均数为k,则把两组数据合并成一组以后,这组样本的平均数为()

A.

B.

C.

D.答案:B19.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为()

A.1

B.2

C.

D.3答案:C20.设直角三角形的三边长分别为a,b,c(a<b<c),则“a:b:c=3:4:5”是“a,b,c成等差数列”的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分又非必要条件答案:∵直角三角形的三边长分别为a,b,c(a<b<c),a:b:c=3:4:5,∴a=3k,b=4k,c=5k(k>0),∴a,b,c成等差数列.即“a:b:c=3:4:5”?“a,b,c成等差数列”.∵直角三角形的三边长分别为a,b,c(a<b<c),a,b,c成等差数列,∴a2+b2=c22b=a+c,∴a2+a2+

c2+2ac4=c2,∴4a=3b,5a=3c,∴a:b:c=3:4:5,即“a,b,c成等差数列”?“a:b:c=3:4:5”.故选C.21.根据如图的框图,写出打印的第五个数是______.答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是:输出N<35时,打印A值.程序在运行过程中各变量的情况如下表示:

是否继续循环

A

N循环前

1

1

第一圈

2×1+1=3

2

是第二圈

2×3+1=7

3

是第三圈

2×7+1=15

4

是第四圈

2×15+1=31

5

是…所以这个打印的第五个数是31.故为:3122.以椭圆x23+y2=1的右焦点为焦点,且顶点在原点的抛物线标准方程为______.答案:∵椭圆x23+y2=1的右焦点F(2,0),∴以F(2,0)为焦点,顶点在原点的抛物线标准方程为y2=42x.故为:y2=42x.23.在四边形ABCD中有AC=AB+AD,则它的形状一定是______.答案:由向量加法的平行四边形法则及AC=AB+AD,知四边形ABCD为平行四边形,故为:平行四边形.24.若复数(1+bi)•(2-i)是纯虚数(i是虚数单位,b是实数),则b=()A.-2B.-12C.12D.2答案:由(1+bi)•(2-i)=2+b+(2b-1)i是纯虚数,则2+b=02b-1≠0,解得b=-2.故选A.25.命题“零向量与任意向量共线”的否定为______.答案:命题“零向量与任意向量共线”即“任意向量与零向量共线”,是全称命题,其否定为特称命题:“有的向量与零向量不共线”.故为:“有的向量与零向量不共线”.26.命题:“方程x2-1=0的解是x=±1”,其使用逻辑联结词的情况是()A.使用了逻辑联结词“且”B.使用了逻辑联结词“或”C.使用了逻辑联结词“非”D.没有使用逻辑联结词答案:“x=±1”可以写成“x=1或x=-1”,故选B.27.将一枚骰子连续抛掷600次,请你估计掷出的点数大于2的大约是______次.答案:一颗骰子是均匀的,当抛这颗骰子时,出现的6个点数是等可能的,将一枚骰子连续抛掷600次,估计每一个嗲回溯出现的次数是100,∴掷出的点数大于2的大约有400次,故为:400.28.命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ”过程应用了()

A.分析发

B.综合法

C.综合法、分析法结合使用

D.间接证法答案:B29.已知直线l:(t为参数)的倾斜角是()

A.

B.

C.

D.答案:D30.给出下列说法:①球的半径是球面上任意一点与球心的连线段;②球的直径是球面上任意两点的连线段;③用一个平面截一个球面,得到的是一个圆;④球常用表示球心的字母表示.其中说法正确的是______.答案:根据球的定义直接判断①正确;②错误;;③用一个平面截一个球面,得到的是一个圆;可以是小圆,也可能是大圆,正确;④球常用表示球心的字母表示.满足球的定义正确;故为:①③④31.某程序图如图所示,该程序运行后输出的结果是______.答案:由图知运算规则是对S=2S,故第一次进入循环体后S=21,第二次进入循环体后S=22=4,第三次进入循环体后S=24=16,第四次进入循环体后S=216>2012,退出循环.故该程序运行后输出的结果是:k=4+1=5.故为:532.执行如图所示的程序框图,输出的S值为()

A.2

B.4

C.8

D.16

答案:C33.如图为一个求50个数的平均数的程序,在横线上应填充的语句为()

A.i>50

B.i<50

C.i>=50

D.i<=50

答案:A34.若直线x-y-1=0与直线x-ay=0的夹角为,则实数a等于()

A.

B.0

C.

D.0或答案:D35.分析如图的程序:若输入38,运行右边的程序后,得到的结果是

______.答案:根据程序语句,其意义为:输入一个x,使得9<x<100a=x\10

为去十位数b=xMOD10

去余数,即取个位数x=10*b+a

重新组合数字,用原来二位数的十位当个位,个位当十位否则说明输入有误故当输入38时输出83故为:8336.在正方体ABCD-A1B1C1D1中,直线BC1与平面A1BD所成角的余弦值是______.答案:分别以DA、DC、DD1为x、y、z轴建立如图所示空间直角坐标系设正方体的棱长等于1,可得D(0,0,0),B(1,1,0),C1(0,1,1),A1(1,0,1),∴BC1=(-1,0,1),A1D=(-1,0,-1),BD=(-1,-1,0)设n=(x,y,z)是平面A1BD的一个法向量,则n•A1D=-x-z=0n•BD=-x-y=0,取x=1,得y=z=-1∴平面A1BD的一个法向量为n=(1,-1,-1)设直线BC1与平面A1BD所成角为θ,则sinθ=|cos<BC1,n>|=BC1•n|BC1|•n=63∴cosθ=1-sin2θ=33,即直线BC1与平面A1BD所成角的余弦值是33故为:3337.如图为某公司的组织结构图,则后勤部的直接领导是______.

答案:有已知中某公司的组织结构图,可得专家办公室直接领导:财务部,后勤部和编辑部三个部门,故后勤部的直接领导是专家办公室.故为:专家办公室.38.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是()

A.a=bb=a

B.c=b

b=a

a=c

C.b=aa=b

D.a=cc=bb=a答案:B39.若关于x的一元二次实系数方程x2+px+q=0有一个根为1+i(i是虚数单位),则p+q的值是()

A.-1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论