2023年郑州轨道工程职业学院高职单招(数学)试题库含答案解析_第1页
2023年郑州轨道工程职业学院高职单招(数学)试题库含答案解析_第2页
2023年郑州轨道工程职业学院高职单招(数学)试题库含答案解析_第3页
2023年郑州轨道工程职业学院高职单招(数学)试题库含答案解析_第4页
2023年郑州轨道工程职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年郑州轨道工程职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.能较好地反映一组数据的离散程度的是()

A.众数

B.平均数

C.标准差

D.极差答案:C2.探测某片森林知道,可采伐的木材有10万立方米.设森林可采伐木材的年平均增长率为8%,则经过______年,可采伐的木材增加到40万立方米.答案:设经过n年可采伐本材达到40万立方米则有10×(1+8%)n=40即(1+8%)n=4故有n=log1.084,解得n≈19即经过19年,可采伐的木材增加到40万立方米故为193.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()

A.9

B.18

C.27

D.36答案:B4.已知直线l1:3x-y+2=0,l2:3x+3y-5=0,则直线l1与l2的夹角是______.答案:因为直线l1的斜率为3,故倾斜角为60°,直线l2的斜率为-3,倾斜角为120°,故两直线的夹角为60°,即两直线的夹角为π3,故为

π3.5.条件语句的一般形式如图所示,其中B表示的是()

A.条件

B.条件语句

C.满足条件时执行的内容

D.不满足条件时执行的内容

答案:C6.若a=(1,1),则|a|=______.答案:由题意知,a=(1,1),则|a|=1+1=2,故为:2.7.下列各图形不是函数的图象的是()A.

B.

C.

D.

答案:由函数的概念,B中有的x,存在两个y与x对应,不符合函数的定义,而ACD均符合.故选B8.一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中()A.AB∥CDB.AB与CD相交C.AB⊥CDD.AB与CD所成的角为60°答案:将正方体的展开图,还原为正方体,AB,CD为相邻表面,且无公共顶点的两条面上的对角线∴AB与CD所成的角为60°故选D.9.已知点M在平面ABC内,并且对空间任意一点O,有OM=xOA+13OB+13OC,则x的值为()A.1B.0C.3D.13答案:解∵OM=xOA+13OB+13OC,且M,A,B,C四点共面,∴必有x+13+13=1,解之可得x=13,故选D10.若把A、B、C、D、E、F、G七人排成一排,则A、B必须相邻,且C、D不能相邻的概率是______(结果用数值表示).答案:把AB看成一个整体,CD不能相邻,就用插空法,则有A22A44A25种方法把A、B、C、D、E、F、G七人排成一排,随便排的种数A77所以概率为A22A44A25A77=421故为:421.11.已知指数函数f(x)的图象过点(3,8),求f(6)的值.答案:设指数函数为:f(x)=ax,因为指数函数f(x)的图象过点(3,8),所以8=a3,∴a=2,所求指数函数为f(x)=2x;所以f(6)=26=64所以f(6)的值为64.12.两条互相平行的直线分别过点A(6,2)和B(-3,-1),并且各自绕着A,B旋转,如果两条平行直线间的距离为d.

求:

(1)d的变化范围;

(2)当d取最大值时两条直线的方程.答案:(1)方法一:①当两条直线的斜率不存在时,即两直线分别为x=6和x=-3,则它们之间的距离为9.…(2分)②当两条直线的斜率存在时,设这两条直线方程为l1:y-2=k(x-6),l2:y+1=k(x+3),即l1:kx-y-6k+2=0,l2:kx-y+3k-1=0,…(4分)∴d=|3k-1+6k-2|k2+1=3|3k-1|k2+1.即(81-d2)k2-54k+9-d2=0.∵k∈R,且d≠9,d>0,∴△=(-54)2-4(81-d2)(9-d2)≥0,即0<d≤310且d≠9.…(9分)综合①②可知,所求d的变化范围为(0,310].方法二:如图所示,显然有0<d≤|AB|.而|AB|=[6-(-3)]2+[2-(-1)]2=310.故所求的d的变化范围为(0,310].(2)由图可知,当d取最大值时,两直线垂直于AB.而kAB=2-(-1)6-(-3)=13,∴所求直线的斜率为-3.故所求的直线方程分别为y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0-…(13分)13.四面体ABCD中,设M是CD的中点,则化简的结果是()

A.

B.

C.

D.答案:A14.函数f(x)=-2x+1(x∈[-2,2])的最小、最大值分别为()A.3,5B.-3,5C.1,5D.5,-3答案:因为f(x)=-2x+1(x∈[-2,2])是单调递减函数,所以当x=2时,函数的最小值为-3.当x=-2时,函数的最大值为5.故选B.15.将包含甲、乙两人的4位同学平均分成2个小组参加某项公益活动,则甲、乙两名同学分在同一小组的概率为()

A.

B.

C.

D.答案:C16.已知f(x)=,若f(x0)>1,则x0的取值范围是()

A.(0,1)

B.(-∞,0)∪(0,+∞)

C.(-∞,0)∪(1,+∞)

D.(1,+∞)答案:C17.设集合A={0,1,2,3},B={1,2,3,4},则集合A∩B的真子集的个数为()A.32个B.16个C.8个D.7个答案:∵A={0,1,2,3},B={1,2,3,4},∴集合A∩B={1,2,3}.集合的真子集为{1},{2},{3},{1,2},{1,3},{2,3},?.共有7个.故选D.18.复数z=(2+i)(1+i)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案:因为z=(2+i)(1+i)=2+3i+i2=1+3i,所以复数对应点的坐标为(1,3),所以位于第一象限.故选A.19.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有实数解,求a的值.答案:设方程的实根为x0,则方程(1+i)x2-2(a+i)x+5-3i=0可化为(x20-2ax0+5)+(x20-2x0-3)i=0由复数相等的充要条件可得x20-2ax0+5=0①x20-2x0-3=0

②由②得x0=3或-1,代入①得a=73或-3∴a=73或-320.平面向量与的夹角为60°,=(1,0),||=1,则|+2|=(

A.7

B.

C.4

D.12答案:B21.下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真答案:A、逆命题与逆否命题之间不存在必然的真假关系,故A错误;B、由不等式的性质可知,“a>b”与“a+c>b+c”等价,故B错误;C、“a2+b2=0,则a,b全为0”的逆否命题是“若a,b不全为0,则a2+b2≠0”,故C错误;D、否命题和逆命题是互为逆否命题,有着一致的真假性,故D正确;故选D22.(本小题满分10分)选修4-1:几何证明选讲

如图,的角平分线的延长线交它的外接圆于点.

(Ⅰ)证明:;

(Ⅱ)若的面积,求的大小.答案:(Ⅰ)证明见解析(Ⅱ)90°解析:本题主要考查平面几何中与圆有关的定理及性质的应用、三角形相似及性质的应用.证明:(Ⅰ)由已知条件,可得∠BAE=∠CAD.因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(Ⅱ)因为△ABE∽△ADC,所以,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.【点评】在圆的有关问题中经常要用到弦切角定理、圆周角定理、相交弦定理等结论,解题时要注意根据已知条件进行灵活的选择,同时三角形相似是证明一些与比例有关问题的的最好的方法.23.已知方程x2+y2+4x-2y-4=0,则x2+y2的最大值是()A.95B.45C.14-65D.14+65答案:由方程x2+y2+4x-2y-4=0得到圆心为(-2,1),半径为3,设圆上一点为(x,y)圆心到原点的距离是(-2)2+1

2=5圆上的点到原点的最大距离是5+3故x2+y2的最大值是为(5+3)2=14+65故选D24.用反证法证明命题“在函数f(x)=x2+px+q中,|f(1)|,|f(2)|,|f(3)|至少有一个不小于”时,假设正确的是()

A.假设|f(1)|,|f(2)|,|f(3)|至多有一个小于

B.假设|f(1)|,|f(2)|,|f(3)|至多有两个小于

C.假设|f(1)|,|f(2)|,|f(3)|都不小于

D.假设|f(1)|,|f(2)|,|f(3)|都小于答案:D25.某次我市高三教学质量检测中,甲、乙、丙三科考试成绩的直方图如如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由如图曲线可得下列说法中正确的一项是()

A.甲科总体的标准差最小

B.丙科总体的平均数最小

C.乙科总体的标准差及平均数都居中

D.甲、乙、丙的总体的平均数不相同

答案:A26.已知f(x)在(0,2)上是增函数,f(x+2)是偶函数,那么正确的是()A.f(1)<f(52)<f(72)B.f(72)<f(1)<f(52)C.f(72)<f(52)<f(1)D.f(52)<f(1)<f(72)答案:根据函数的图象的平移可得把f(x+2)向右平移2个单位可得f(x)的图象f(x+2)是偶函数,其图象关于y轴对称可知f(x)的图象关于x=2对称∴f(72)=f(12),f(52)=f(32)∵f(x)在(0,2)单调递增,且12<1<32∴f(12)<f(1)<f(32)即f(72)<f(1)<f(52)故选:B27.如图所示,CD为Rt△ABC斜边AB边上的中线,CE⊥CD,CE=103,连接DE交BC于点F,AC=4,BC=3.

求证:(1)△ABC∽△EDC;

(2)DF=EF.答案:证明:(1)∵CD为Rt△ABC斜边AB边上的中线∴CD=12AB=12AC2+BC2=52.∴CECD=10352=43=ACBC,∠ACB=∠DCE=90°.∴△ABC∽△EDC.(2)因为△ABC∽△EDC∴∠B=∠CDE,∠E=∠A.由CD为Rt△ABC斜边AB边上的中线得:CD=AD=DB?∠B=∠DCB,∠A=∠DCA∴∠DCB=∠CDE?DF=CF;又因为:∠DCA+∠DCB=∠DCB+∠BCE=90°;∴∠DCA=∠BCE=∠A=∠E∴CF=EF.∴DF=EF.28.凡自然数都是整数,而

4是自然数

所以4是整数.以上三段论推理()

A.正确

B.推理形式不正确

C.两个“自然数”概念不一致

D.两个“整数”概念不一致答案:A29.设非零向量、、满足||=||=||,+=,则<,>=()

A.150°

B.120°

C.60°

D.30°答案:B30.设O是正方形ABCD的中心,向量,,,是(

A.平行向量

B.有相同终点的向量

C.相等向量

D.模相等的向量答案:D31.如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A.π4B.5π4C.πD.3π2答案:此几何体是一个底面直径为1,高为1的圆柱底面周长是2π×12=π故侧面积为1×π=π故选C32.设双曲线(a>0,b>0)的右顶点为A,P为双曲线上的一个动点(不是顶点),从点A引双曲线的两条渐近线的平行线,与直线OP分别交于Q,R两点,其中O为坐标原点,则|OP|2与|OQ|•|OR|的大小关系为()

A.|OP|2<|OQ|•|OR|

B.|OP|2>|OQ|•|OR|

C.|OP|2=|OQ|•|OR|

D.不确定答案:C33.若向量e1,e2不共线,且ke1+e2与e1+ke2可以作为平面内的一组基底,则实数k的取值范围为______.答案:∵当(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2与e1+ke2可以作为平面内的一组基底,则实数k的取值范围为k≠±1.故为:k≠±1.34.在平面直角坐标系中,经伸缩变换后曲线方程变换为椭圆方程,此伸缩变换公式是(

)A.B.C.D.答案:B解析:解:因为在平面直角坐标系中,经伸缩变换后曲线方程变换为椭圆方程,设变换为,将其代入方程中,得到x,y的关系式,对应相等可知,选B35.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()

A.10种

B.20种

C.25种

D.32种答案:D36.已知三个向量a,b,c不共面,并且p=a+b-c,q=2a-3b-5c,r=-7a+18b+22c,向量p,q,r是否共面?答案:解:实数λ,μ,使p=λq+μr,则a+b-c=(2λ-7μ)a+(-3λ+18μ)b+(-5λ+22μ)c∵a,b,c不共面,∴∴即存在实数,,使p=λq+μr,故向量p、q、r共面.37.点O是△ABC内一点,若+=-,则是S△AOB:S△AOC=()

A.1

B.

C.

D.答案:A38.

已知抛物线y2=2px(p>0)的焦点为F,过F的直线交y轴正半轴于点P,交抛物线于A,B两点,其中点A在第一象限,若,,,则μ的取值范围是()

A.[1,]

B.[,2]

C.[2,3]

D.[3,4]答案:B39.某学校高一年级男生人数占该年级学生人数的40%,在一次考试中,男,女平均分数分别为75、80,则这次考试该年级学生平均分数为______.答案:设该班男生有x人,女生有y人,这次考试该年级学生平均分数为a.根据题意可知:75x+80y=(x+y)×a,且xx+y=40%.所以a=78,则这次考试该年级学生平均分数为78.故为:78.40.若已知A(1,1,1),B(-3,-3,-3),则线段AB的长为()

A.4

B.2

C.4

D.3答案:A41.如图是一个实物图形,则它的左视图大致为()A.

B.

C.

D.

答案:∵左视图是指由物体左边向右做正投影得到的视图,并且在左视图中看到的线用实线,看不到的线用虚线,∴该几何体的左视图应当是包含一条从左上到右下的对角线的矩形,并且对角线在左视图中为实线,故选D.42.平行线3x-4y-8=0与6x-8y+3=0的距离为______.答案:6x-8y+3=0可化为3x-4y+32=0,故所求距离为|-8-32|32+(-4)2=1910,故为:191043.如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列命题:

①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个;

②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且仅有2个;

③若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个.

上述命题中,正确命题的个数是()A.0B.1C.2D.3答案:①正确,此点为点O;②不正确,注意到p,q为常数,由p,q中必有一个为零,另一个非零,从而可知有且仅有4个点,这两点在其中一条直线上,且到另一直线的距离为q(或p);③正确,四个交点为与直线l1相距为p的两条平行线和与直线l2相距为q的两条平行线的交点;故选C.44.圆心既在直线x-y=0上,又在直线x+y-4=0上,且经过原点的圆的方程是______.答案:∵圆心既在直线x-y=0上,又在直线x+y-4=0上,∴由x-y=0x+y-4=0,得x=2y=2.∴圆心坐标为(2,2),∵圆经过原点,∴半径r=22,故所求圆的方程为(x-2)2+(y-2)2=8.45.设a=lg2+lg5,b=ex(x<0),则a与b的大小关系是?答案:a═lg2+lg5=lg10=1又b=ex,由指数函数的性质知,当x<0时,0<b<1∴a>b46.已知函数f(x)=2x,x≥01,

x<0,若f(1-a2)>f(2a),则实数a的取值范围是______.答案:函数f(x)=2x,x≥01,

x<0,x<0时是常函数,x≥0时是增函数,由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故为:-1<a<2-1.47.某海域内有一孤岛,岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a,短轴长为2b的椭圆,已知岛上甲、乙导航灯的海拔高度分别为h1、h2,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上,现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为θ1、θ2,那么船只已进入该浅水区的判别条件是______.答案:依题意,|MF1|+|MF2|≤2a?h1?cotθ1+h2?cotθ2≤2a;故为:h1?cotθ1+h2?cotθ2≤2a48.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为()A.123B.363C.273D.6答案:此几何体为一个三棱柱,棱柱的高是4,底面正三角形的高是33,设底面边长为a,则32a=33,∴a=6,故三棱柱体积V=12?62?32?4=363.故选B49.已知点G是△ABC的重心,点P是△GBC内一点,若,则λ+μ的取值范围是()

A.

B.

C.

D.(1,2)答案:B50.有一个容量为80的样本,数据的最大值是140,最小值是51,组距为10,则可以分为(

A.10组

B.9组

C.8组

D.7组答案:B第2卷一.综合题(共50题)1.72的正约数(包括1和72)共有______个.答案:72=23×32.∴2m?3n(0≤m≤3,0≤n≤2,m,n∈N)都是72的正约数.m的取法有4种,n的取法有3种,由分步计数原理共3×4个.故为:12.2.在数列{an}中,a1=1,an+1=2a

n2+an(n∈N*),

(1)计算a2,a3,a4

(2)猜想数列{an}的通项公式,并用数学归纳法证明.答案:(1):a2=2a

12+a1=23,a3=2a

22+a2=24,a4=2a

32+a3=25,(2):猜想an=2n+1下面用数学归纳法证明这个猜想.①当n=1时,a1=1,命题成立.②假设n=k时命题成立,即ak=2k+1当n=k+1时ak+1=2a

k2+ak=2×2k+12+2k+1(把假设作为条件代入)=42(k+1)+2=2(k+1)+1由①②知命题对一切n∈N*均成立.3.如图所示,已知点P为菱形ABCD外一点,且PA⊥面ABCD,PA=AD=AC,点F为PC中点,则二面角CBFD的正切值为()

A.

B.

C.

D.

答案:D4.满足f(xy)=f(x)+f(y)(x>0,y>0)且f(3)=2的函数可以是f(x)=______.答案:若函数为对数函数,不妨令f(x)=logax则f(xy)=loga(xy)=logax+logay=f(x)+f(y)满足条件又∵f(3)=2∴loga3=2解得a=3故f(x)=log3x故为:log3x5.已知:如图,⊙O1与⊙O2外切于C点,AB一条外公切线,A、B分别为切点,连接AC、BC.设⊙O1的半径为R,⊙O2的半径为r,若tan∠ABC=,则的值为()

A.

B.

C.2

D.3

答案:C6.Rt△ABC中,AB=3,BC=4,AC=5,将三角形绕直角边AB旋转一周形成一个新的几何体,想象几何体的结构,画出它的三视图,求出它的表面积和体积.答案:以绕AB边旋转为例,其直观图、正(侧)视图、俯视图依次分别为:其表面是扇形的表面,所以其表面积为S=πRL=36π,V=13×π×BC2×AB=16π.7.已知函数y=ax2+bx+c,如果a>b>c,且a+b+c=0,则它的图象是(

)

A.

B.

C.

D.

答案:D8.在对吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()

A.若随机变量K2的观测值k>6.635,我们有99%的把握说明吸烟与患肺病有关,则若某人吸烟,那么他有99%的可能患有肺病

B.若由随机变量求出有99%的把握说吸烟与患肺病有关,则在100个吸烟者中必有99个人患有肺病

C.若由随机变量求出有95%的把握说吸烟与患肺病有关,那么有5%的可能性使得推断错误

D.以上说法均不正确答案:D9.设ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,则a1x1,a2x2,…,anxn的值中,现给出以下结论,其中你认为正确的是______.

①都大于1②都小于1③至少有一个不大于1④至多有一个不小于1⑤至少有一个不小于1.答案:由题意ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,对于a1x1,a2x2,…,anxn的值中,若①成立,则分母都小于分子,由于分母的平方和为1,故可得a12+a22+…an2大于1,这与已知矛盾,故①不对;若②成立,则分母都大于分子,由于分母的平方和为1,故可得a12+a22+…an2小于1,这与已知矛盾,故②不对;由于③与①两结论互否,故③对④不可能成立,a1x1,a2x2,…,anxn的值中有多于一个的比值大于1是可以的,故不对⑤与②两结论互否,故正确综上③⑤两结论正确故为③⑤10.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},则集合A∩B中的元素个数为(

)

A.0个

B.1个

C.2个

D.无穷多个答案:C11.点B是点A(1,2,3)在坐标平面yOz内的正投影,则|OB|等于()

A.

B.

C.

D.答案:B12.设k>1,则关于x,y的方程(1-k)x2+y2=k2-1所表示的曲线是()

A.长轴在x轴上的椭圆

B.长轴在y轴上的椭圆

C.实轴在x轴上的双曲线

D.实轴在y轴上的双曲线答案:D13.已知两点P(4,-9),Q(-2,3),则直线PQ与y轴的交点分有向线段PQ的比为______.答案:直线PQ与y轴的交点的横坐标等于0,由定比分点坐标公式可得0=4+λ(-2)1+λ,解得λ=2,故直线PQ与y轴的交点分有向线段PQ的比为

λ=2,故为:2.14.设a、b为单位向量,它们的夹角为90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它们的夹角为90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10,|a+3b|=10.故选B.15.盒子中有10张奖券,其中3张有奖,甲、乙先后从中各抽取1张(不放回),记“甲中奖”为A,“乙中奖”为B.

(1)求P(A),P(B),P(AB),P(A|B);

(2)A与B是否相互独立,说明理由.答案:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因为P(A)≠P(A|B),所以A与B不相互独立.解析:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因为P(A)≠P(A|B),所以A与B不相互独立.16.若关于x的一元二次实系数方程x2+px+q=0有一个根为1+i(i是虚数单位),则p+q的值是()

A.-1

B.0

C.2

D.-2答案:B17.某品牌平板电脑的采购商指导价为每台2000元,若一次采购数量达到一定量,还可享受折扣.如图为某位采购商根据折扣情况设计的算法程序框图,若一次采购85台该平板电脑,则S=______元.答案:分析程序中各变量、各语句,其作用是:表示一次采购共需花费的金额,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数S=200×0.8?x,x>100200×0.9?x,50<x≤100200?x,0<x≤50的值,∵x=85,∴S=200×0.9×85=15300(元),故为:15300.18.当a≠0时,y=ax+b和y=bax的图象只可能是()

A.

B.

C.

D.

答案:A19.“a=2”是“直线ax+2y=0平行于直线x+y=1”的(

A.充分而不必要条件

B.必要而不充分条件

C.充分必要条件

D.既不充分也不必要条件答案:C20.已知x、y之间的一组数据如下:

x0123y8264则线性回归方程y=a+bx所表示的直线必经过点()A.(0,0)B.(2,6)C.(1.5,5)D.(1,5)答案:∵.x=0+1+2+34=1.5,.y=8+2+6+44=5∴线性回归方程y=a+bx所表示的直线必经过点(1.5,5)故选C21.已知A(3,0),B(0,3),O为坐标原点,点C在第一象限内,且∠AOC=60°,设OC=OA+λOB

(λ∈R),则λ等于()A.33B.3C.13D.3答案:∵OC=OC=OA+λOB(λ∈R),∠AOC=60°∴|λOB|=

3tan60°=33又∵|OB|=3∴λ=3故选D.22.如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()

A.2+

B.

C.

D.1+答案:A23.如图,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=______.答案:如图,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则根据椭圆的对称性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余两对的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故为35.24.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是()

A.内切

B.相交

C.外切

D.外离答案:B25.不等式的解集是(

A.(-3,2)

B.(2,+∞)

C.(-∞,-3)∪(2,+∞)

D.(-∞,-3)∪(3,+∞)答案:C26.下表是x与y之间的一组数据,则y关于x的线性回归方程

必过点()

x

0

1

2

3

y

1

3

5

7

A.(2,2)

B.(1.5,2)

C.(1,2)

D.(1.5,4)答案:D27.若点A(1,2,3),B(-3,2,7),且AC+BC=0,则点C的坐标为______.答案:设C(x,y,z),则AC+BC=(2x+2,2y-4,2z-10)=0,∴x=-1,y=2,z=5.故为(-1,2,5)28.已知两点A(2,1),B(3,3),则直线AB的斜率为()

A.2

B.

C.

D.-2答案:A29.已知2,4,2x,4y四个数的平均数是5而5,7,4x,6y四个数的平均数是9,则xy的值是______.答案:因为2,4,2x,4y四个数的平均数是5,则2+4+2x+4y=4×5,又由5,7,4x,6y四个数的平均数是9,则5+7+4x+6y=4×9,x与y满足的关系式为x+2y=72x+3y=12解得x=3y=2故为6.30.编程序,求和s=1!+2!+3!+…+20!答案:s=0n=1t=1WHILE

n<=20s=s+tn=n+1t=t*nWENDPRINT

sEND31.P是直线3x+y+1=0上一点,P到点Q(0,2)距离的最小值是______.答案:过点Q作直线的垂线段,当P是垂足时,线段PQ最短,故最小距离是点Q(0,2)到直线3x+y+1=0的距离d,d=|0+2+1|3+1=32=1.5.∴P到点Q(0,2)距离的最小值是1.5;故为1.5.32.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.(尺寸不作严格要求,但是凡是未用铅笔作图不得分,随手画图也不得分)答案:由题可知题目所述几何体是正六棱台,画法如下:画法:(1)、画轴画x轴、y轴、z轴,使∠x′O′y′=45°,∠x′O′z′=90°

(图1)(2)、画底面以O′为中心,在XOY坐标系内画正六棱台下底面正方形的直观图ABCDEF.在z′轴上取线段O′O1等于正六棱台的高;过O1

画O1M、O1N分别平行O’x′、O′y′,再以O1为中心,画正六棱台上底面正方形的直观图A′B′C′E′F′(3)、成图连接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱台的直观图

(如图2).33.{,,}=是空间向量的一个基底,设=+,=+,=+,给出下列向量组:①{,,},②{,},③{,,},④{,,},其中可以作为空间向量基底的向量组有()组.

A.1

B.2

C.3

D.4答案:C34.以下命题:

①二直线平行的充要条件是它们的斜率相等;

②过圆上的点(x0,y0)与圆x2+y2=r2相切的直线方程是x0x+y0y=r2;

③平面内到两定点的距离之和等于常数的点的轨迹是椭圆;

④抛物线上任意一点M到焦点的距离都等于点M到其准线的距离.

其中正确命题的标号是______.答案:①两条直线平行的充要条件是它们的斜率相等,且截距不等,故①不正确,②过点(x0,y0)与圆x2+y2=r2相切的直线方程是x0x+y0y=r2.②正确,③不正确,若平面内到两定点距离之和等于常数,如这个常数正好为两个点的距离,则动点的轨迹是两点的连线段,而不是椭圆;④根据抛物线的定义知:抛物线上任意一点M到焦点的距离都等于点M到其准线的距离.故④正确.故为:②④.35.某个命题与正整数n有关,如果当n=k(k∈N+)时命题成立,那么可推得当n=k+1时命题也成立.

现已知当n=7时该命题不成立,那么可推得()

A.当n=6时该命题不成立

B.当n=6时该命题成立

C.当n=8时该命题不成立

D.当n=8时该命题成立答案:A36.直线x3+y4=t被两坐标轴截得的线段长度为1,则t的值是

______.答案:令y=0,得:x=3t;令x=0,得:y=4t,所以被两坐标轴截得的线段长度为(3t)2+(4t)2=|5t|=1所以t=±15故为±1537.2010年广州亚运会乒乓球男单决赛中,马龙与王皓在前三局的比分分别是9:11、11:8、11:7,已知马琳与王皓的水平相当,比赛实行“七局四胜”制,即先赢四局者胜,求(1)王皓获胜的概率;

(2)比赛打满七局的概率.(3)记比赛结束时的比赛局数为ξ,求ξ的分布列及数学期望.答案:(1)在马龙先前三局赢两局的情况下,王皓取胜有两种情况.第一种是王皓连胜三局;第二种是在第四到第六局,王皓赢了两局,第七局王皓赢.在第一种情况下王皓取胜的概率为(12)3=18;在第二种情况下王皓取胜的概率为为C23(12)3×12=316,王皓获胜的概率18+316=516;(3分)(2)比赛打满七局有两种结果:马龙胜或王皓胜.记“比赛打满七局,马龙胜”为事件A,则P(A)=C13(12)3×12=316;记“比赛打满七局,王皓胜”为事件B,则P(B)=C23(12)3×12=316;因为事件A、B互斥,所以比赛打满七局的概率为P(A)+P(B)=38.(7分)(3)比赛结束时,比赛的局数为5,6,7,则打完五局马龙获胜的概率为12×12=14;打完六局马琳获胜的概率为C12(12)2×12=14,王皓取胜的概率为(12)3=18;比赛打满七局,马龙获胜的概率为C13(12)3×12=316,王皓取胜的概率为为C23(12)3×12=316;所以ξ的分布列为ξ567P(ξ)143838Eξ=5×14+6×38+7×38=498.(12分)38.用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)答案:证明:①n=1时,左边=2,右边=2,等式成立;②假设n=k时,结论成立,即:(k+1)+(k+2)+…+(k+k)=k(3k+1)2则n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1)=k(3k+1)2+3k+2=(k+1)(3k+4)2故n=k+1时,等式成立由①②可知:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)成立39.设直线过点(0,a),其斜率为1,且与圆x2+y2=2相切,则a的值为()

A.±

B.±2

C.±2

D.±4答案:B40.已知下列命题(其中a,b为直线,α为平面):

①若一条直线垂直于一个平面内无数条直线,则这条直线与这个平面垂直;

②若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面;

③若a∥α,b⊥α,则a⊥b;

④若a⊥b,则过b有且只有一个平面与a垂直.

上述四个命题中,真命题是()A.①,②B.②,③C.②,④D.③,④答案:①平面内无数条直线均为平行线时,不能得出直线与这个平面垂直,将“无数条”改为“所有”才正确;故①错误;②垂直于这条直线的直线与这个平面可以是任何的位置关系,有可能是平行、相交、线在面内,故②错误.③若a∥α,b⊥α,则必有a⊥b,正确;④若a⊥b,则过b有且只有一个平面与a垂直,显然正确.故选D.41.设复数z的实部是

12,且|z|=1,则z=______.答案:设复数z的虚部等于b,b∈z,由复数z的实部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故为:12±32i.42.为了让学生更多地了解“数学史”知识,某中学高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据下面的频率分布表,解答下列问题:

序号

(i)分组

(分数)本组中间值

(Gi)频数

(人数)频率

(Fi)1(60,70)65①0.122[70,80)7520②3[80,90)85③0.244[90,100]95④⑤合

计501(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);

(2)为鼓励更多的学生了解“数学史”知识,成绩不低于85分的同学能获奖,请估计在参赛的800名学生中大概有多少同学获奖?

(3)请根据频率分布表估计该校高二年级参赛的800名同学的平均成绩.答案:(1)①为6,②为0.4,③为12,④为12⑤为0.24.(5分)(2)(12×0.24+0.24)×800=288,即在参加的800名学生中大概有288名同学获奖.(9分)(3)65×0.12+75×0.4+85×0.24+95×0.24=81(4)估计平均成绩为81分.(12分)43.棱长为a的正四面体中,AB•BC+AC•BD=______.答案:棱长为a的正四面体中,AB=BC=a,且AB与BC的夹角为120°,AC⊥BD.∴AB•BC+AC•BD=a•acos120°+0=-a22,故为:-12.44.栽培甲、乙两种果树,先要培育成苗,然后再进行移栽.已知甲、乙两种果树成苗的概率分别为,,移栽后成活的概率分别为,.

(1)求甲、乙两种果树至少有一种果树成苗的概率;

(2)求恰好有一种果树能培育成苗且移栽成活的概率.答案:(1)甲、乙两种果树至少有一种成苗的概率为;(2).恰好有一种果树培育成苗且移栽成活的概率为.解析:分别记甲、乙两种果树成苗为事件,;分别记甲、乙两种果树苗移栽成活为事件,,,,,.(1)甲、乙两种果树至少有一种成苗的概率为;(2)解法一:分别记两种果树培育成苗且移栽成活为事件,则,.恰好有一种果树培育成苗且移栽成活的概率为.解法二:恰好有一种果树栽培成活的概率为.45.一个口袋中有红球3个,白球4个.

(Ⅰ)从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求恰好第2次中奖的概率;

(Ⅱ)从中有放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X的数学期望E(X).答案:(I)“恰好第2次中奖“即为“第一次摸到的2个白球,第二次至少有1个红球”,其概率为C24C27×C23+C13C12C25=935;(II)摸一次中奖的概率为p=C23+C13C14C27=57,由条件知X~B(4,p),∴EX=np=4×57=207.46.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米.当水面升高1米后,水面宽度是______米.答案:由题意,建立如图所示的坐标系,抛物线的开口向下,设抛物线的标准方程为x2=-2py(p>0)∵顶点距水面2米时,量得水面宽8米∴点(4,-2)在抛物线上,代入方程得,p=4∴x2=-8y当水面升高1米后,y=-1代入方程得:x=±22∴水面宽度是42米故为:4247.已知=(-3,2,5),=(1,x,-1),且=2,则x的值为()

A.3

B.4

C.5

D.6答案:C48.在对两个变量x,y进行线性回归分析时,有下列步骤:

①对所求出的回归直线方程作出解释;

②收集数据(xi,yi),i=1,2,…,n;

③求线性回归方程;

④求相关系数;

⑤根据所搜集的数据绘制散点图.

如果根据可形性要求能够作出变量x,y具有线性相关结论,则在下列操作顺序中正确的是()

A.①②⑤③④

B.③②④⑤①

C.②④③①⑤

D.②⑤④③①答案:D49.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是______.答案:不妨设在第1组中随机抽到的号码为x,则在第16组中应抽出的号码为120+x.设第1组抽出的号码为x,则第16组应抽出的号码是8×15+x=126,∴x=6.故为:6.50.已知F1,F2为椭圆x2a2+y2b2=1(a>b>0)的两个焦点,过F2作椭圆的弦AB,若△AF1B的周长为16,椭圆的离心率为e=32,则椭圆的方程为______.答案:根据椭圆的定义,△AF1B的周长为16可知,4a=16,∴a=4,∵e=32,∴c=23,∴b=2,∴椭圆的方程为x216+y24=1,故为x216+y24=1第3卷一.综合题(共50题)1.“因为对数函数y=logax是增函数(大前提),而y=logx是对数函数(小前提),所以y=logx是增函数(结论).”上面推理的错误是()

A.大前提错导致结论错

B.小前提错导致结论错

C.推理形式错导致结论错

D.大前提和小前提都错导致结论错答案:A2.已知点G是△ABC的重心,点P是△GBC内一点,若,则λ+μ的取值范围是()

A.

B.

C.

D.(1,2)答案:B3.关于x的方程mx2+2(m+3)x+2m+14=0有两实根,且一个大于4,一个小于4,求m的取值范围。答案:解:令f(x)=mx2+2(m+3)x+2m+14,依题意得或,即或,解得。4.中心在原点,一个焦点坐标为(0,5),短轴长为4的椭圆方程为______.答案:依题意,此椭圆方程为标准方程,且焦点在y轴上,设为y2a2+x2b2=1∵椭圆的焦点坐标为(0,5),短轴长为4,∴c=5,b=2∵a2=b2+c2,∴椭圆的长半轴长为a=4+25=29∴此椭圆的标准方程为y229+x24=1故为y229+x24=15.下列命题:

①垂直于同一直线的两直线平行;

②垂直于同一直线的两平面平行;

③垂直于同一平面的两直线平行;

④垂直于同一平面的两平面平行;

其中正确的有()

A.③④

B.①②④

C.②③

D.②③④答案:C6.设计一个计算1×3×5×7×9×11×13的算法.图中给出了程序的一部分,则在横线①上不能填入的数是()

A.13

B.13.5

C.14

D.14.5答案:A7.如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为2,那么

这个几何体的体积为()A.13B.23C.43D.2答案:根据三视图,可知该几何体是三棱锥,右图为该三棱锥的直观图,三棱锥的底面是一个腰长是2的等腰直角三角形,∴底面的面积是12×2×2=2垂直于底面的侧棱长是2,即高为2,∴三棱锥的体积是13×2×2=43故选C.8.设P点在x轴上,Q点在y轴上,PQ的中点是M(-1,2),则|PQ|等于______.答案:设P(a,0),Q(0,b),∵PQ的中点是M(-1,2),∴由中点坐标公式得a+02=-10+b2=2,解之得a=-2b=4,因此可得P(-2,0),Q(0,4),∴|PQ|=(-2-0)2+(0-4)2=25.故为:259.已知复数z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均为实数,i为虚数单位,且对于任意复数z,有w=.z0•.z,|w|=2|z|.

(Ⅰ)试求m的值,并分别写出x'和y'用x、y表示的关系式;

(Ⅱ)将(x、y)作为点P的坐标,(x'、y')作为点Q的坐标,上述关系可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q,当点P在直线y=x+1上移动时,试求点P经该变换后得到的点Q的轨迹方程;

(Ⅲ)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.答案:(Ⅰ)由题设,|w|=|.z0•.z|=|z0||z|=2|z|,∴|z0|=2,于是由1+m2=4,且m>0,得m=3,…(3分)因此由x′+y′i=.(1-3i)•.(x+yi)=x+3y+(3x-y)i,得关系式x′=x+3yy′=3x-y…(5分)(Ⅱ)设点P(x,y)在直线y=x+1上,则其经变换后的点Q(x',y')满足x′=(1+3)x+3y′=(3x-1)x-1,…(7分)消去x,得y′=(2-3)x′-23+2,故点Q的轨迹方程为y=(2-3)x-23+2…(10分)(3)假设存在这样的直线,∵平行坐标轴的直线显然不满足条件,∴所求直线可设为y=kx+b(k≠0),…(12分)[解法一]∵该直线上的任一点P(x,y),其经变换后得到的点Q(x+3y,3x-y)仍在该直线上,∴3x-y=k(x+3y)+b,即-(3k+1)y=(k-3)x+b,当b≠0时,方程组-(3k+1)=1k-3=k无解,故这样的直线不存在.

…(16分)当b=0时,由-(3k+1)1=k-3k,得3k2+2k-3=0,解得k=33或k=-3,故这样的直线存在,其方程为y=33x或y=-3x,…(18分)[解法二]取直线上一点P(-bk,0),其经变换后的点Q(-bk,-3bk)仍在该直线上,∴-3bk=k(-bk)+b,得b=0,…(14分)故所求直线为y=kx,取直线上一点P(0,k),其经变换后得到的点Q(1+3k,3-k)仍在该直线上.∴3-k=k(1+3k),…(16分)即3k2+2k-3=0,得k=33或k=-3,故这样的直线存在,其方程为y=33x或y=-3x,…(18分)10.如图,点O是平行六面体ABCD-A1B1C1D1的对角线BD1与A1C的交点,=,=,=,则=()

A.++

B.++

C.--+

D.+-

答案:C11.某学校高一年级男生人数占该年级学生人数的40%,在一次考试中,男,女平均分数分别为75、80,则这次考试该年级学生平均分数为______.答案:设该班男生有x人,女生有y人,这次考试该年级学生平均分数为a.根据题意可知:75x+80y=(x+y)×a,且xx+y=40%.所以a=78,则这次考试该年级学生平均分数为78.故为:78.12.以下关于排序的说法中,正确的是(

)A.排序就是将数按从小到大的顺序排序B.排序只有两种方法,即直接插入排序和冒泡排序C.用冒泡排序把一列数从小到大排序时,最小的数逐趟向上漂浮D.用冒泡排序把一列数从小到大排序时,最大的数逐趟向上漂浮答案:C解析:由冒泡排序的特点知C正确.13.一个盒子中装有4张卡片,上面分别写着四个函数:f1(x)=x3,f2(x)=x4,f3(x)=2|x|,f4(x)=x+1x,现从盒子中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得函数为奇函数的概率是______.答案:要使所得函数为奇函数,取出的两个函数必须是一个奇函数、一个偶函数.而所给的4个函数中,有2个奇函数、2个偶函数.所有的取法种数为C24=6,满足条件的取法有2×2=4种,故所得函数为奇函数的概率是46=23,故为23.14.如图,从圆O外一点P引圆O的切线PA和割线PBC,已知PA=22,PC=4,圆心O到BC的距离为3,则圆O的半径为______.答案:∵PA为圆的切线,PBC为圆的割线,由线割线定理得:PA2=PB?PC又∵PA=22,PC=4,∴PB=2,BC=2又∵圆心O到BC的距离为3,∴R=2故为:215.已知大于1的正数x,y,z满足x+y+z=33.

(1)求证:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.

(2)求1log3x+log3y+1log3y+log3z+1log3z+log3x的最小值.答案:(1)由柯西不等式得,(x2x+2y+3z+y2y+2z+3z+z2z+2x+3y)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27得:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32;(2)∵1log3x+log3y+1log3y+log3z+1log3z+log3x=1log3(xy)+1log3(yz)+1log3(zx),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx)),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx))≥9所以,(1log3(xy)+1log3(yz)+1log3(zx))≥9(log3(xy)+log3(yz)+log3(zx))=92log3(xyz),又∵33=x+y+z≥33xyz.∴xyz≤33.∴log3xyz≤32.得92log3xyz≥92×23=3所以,1log3x+log3y+1log3y+log3z+1log3z+log3x≥3当且仅当x=y=z=3时,等号成立.故所求的最小值是3.16.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为

______.答案:两条曲线的普通方程分别为x2+y2=2y,x=-1.解得x=-1y=1.由x=ρcosθy=ρsinθ得点(-1,1),极坐标为(2,3π4).故填:(2,3π4).17.椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为()

A.

B.

C.2

D.4答案:A18.给定椭圆C:x2a2+y2b2=1(a>b>0),称圆心在原点O、半径是a2+b2的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(2,0),其短轴的一个端点到点F的距离为3.

(1)求椭圆C和其“准圆”的方程;

(2)过椭圆C的“准圆”与y轴正半轴的交点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,求l1,l2的方程;

(3)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求AB•AD的取值范围.答案:(1)由题意可得:a=3,c=2,b=1,∴r=(3)2+12=2.∴椭圆C的方程为x23+y2=1,其“准圆”的方程为x2+y2=4;(2)由“准圆”的方程为x2+y2=4,令y=0,解得x=±2,取P(2,0),设过点P且与椭圆相切的直线l的方程为my=x-2,联立my=x-2x23+y2=1,消去x得到关于y的一元二次方程(3+m2)x2+4m+1=0,∴△=16m2-4(3+m2)=0,解得m=±1,故直线l1、l2的方程分别为:y=x-2,y=-x+2.(3)由“准圆”的方程为x2+y2=4,令y=0,解得x=±2,取点A(2,0).设点B(x0,y0),则D(x0,-y0).∴AB•AD=(x0-2,y0)•(x0-2,-y0)=(x0-2)2-y02,∵点B在椭圆x23+y2=1上,∴x023+y02=1,∴y02=1-x023,∴AD•AB=(x0-2)2-1+x023=43(x0-32)2,∵-3<x0<3,∴0≤43(x0-32)2<7+43,∴0≤AD•AB<7+43,即AD•AB的取值范围为[0,7+43)19.设a1,a2,…,a2n+1均为整数,性质P为:对a1,a2,…,a2n+1中任意2n个数,存在一种分法可将其分为两组,每组n个数,使得两组所有元素的和相等求证:a1,a2,…,a2n+1全部相等当且仅当a1,a2,…,a2n+1具有性质P.答案:证明:①当a1,a2,…,a2n+1全部相等时,从中任意2n个数,将其分为两组,每组n个数,两组所有元素的和相等,故性质P成立.②下面证明:当a1,a2,…,a2n+1具有性质P时,a1,a2,…,a2n+1全部相等.反证法:假设a1,a2,…,a2n+1不全部相等,则其中至少有一个整数和其它的整数不同,不妨设此数为a1,若a1在取出的2n个数中,将其分为两组,每组n个数,则a1在的那个组所有元素的和与另一个组所有元素的和不相等,这与性质P矛盾,故假设不成立,所以,当a1,a2,…,a2n+1具有性质P时,a1,a2,…,a2n+1全部相等.综上,a1,a2,…,a2n+1全部相等当且仅当a1,a2,…,a2n+1具有性质P.20.定义平面向量之间的一种运算“⊙”如下:对任意的=(m,n),=(p,q)

,令⊙=mq-np,下面说法错误的序号是()

①若若a与共线,则⊙=0

②⊙=⊙a

③对任意的λ∈R,有(λ)⊙=λ(⊙)

④(⊙)2+(a)2=||2||2

A.②

B.①②

C.②④

D.③④答案:A21.用数学归纳法证明:1n+1+1n+2+1n+3+…+1n+n>1124

(n∈N,n≥1)答案:证明:(1)当n=1时,左边=12>1124,∴n=1时成立(2分)(2)假设当n=k(k≥1)时成立,即1k+1+1k+2+1k+3+…+1k+k>1124那么当n=k+1时,左边=1k+2+1k+3+…+1k+k

+1K+1+k+1k+1+k+1=1k+1+1k+2+1k+3+…+1k+k+1k+k+1

+1k+1+k+1-1k+1>1124+12k+1-12k+2>1124.∴n=k+1时也成立(7分)根据(1)(2)可得不等式对所有的n≥1都成立(8分)22.函数y=2x的值域为______.答案:因为:x≥0,所以:y=2x≥20=1.∴函数y=2x的值域为:[1,+∞).故为:[1,+∞).23.若a>0,b<0,直线y=ax+b的图象可能是()

A.

B.

C.

D.

答案:C24.证明空间任意无三点共线的四点A、B、C、D共面的充分必要条件是:对于空间任一点O,存在实数x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.答案:(必要性)依题意知,B、C、D三点不共线,则由共面向量定理的推论知:四点A、B、C、D共面⇔对空间任一点O,存在实数x1、y1,使得OA=OB+x1BC+y1BD=OB+x1(OC-OB)+y1(OD-OB)=(1-x1-y1)OB+x1OC+y1OD,取x=1-x1-y1、y=x1、z=y1,则有OA=xOB+yOC+zOD,且x+y+z=1.(充分性)对于空间任一点O,存在实数x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.所以x=1-y-z得OA=(1-y-z)OB+yOC+zOD.OA=OB+yBC+zBD,即:BA=yBC+zBD,所以四点A、B、C、D共面.所以,空间任意无三点共线的四点A、B、C、D共面的充分必要条件是:对于空间任一点O,存在实数x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.25.BC是Rt△ABC的斜边,AP⊥平面ABC,PD⊥BC于点D,则图中共有直角三角形的个数是()A.8B.7C.6D.5答案:∵AP⊥平面ABC,BC?平面ABC,∴PA⊥BC,又PD⊥BC于D,连接AD,PD∩PA=A,∴BC⊥平面PAD,AD?平面PAD,∴BC⊥AD;又BC是Rt△ABC的斜边,∴∠BAC为直角,∴图中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.故为:8.26.在△ABC中,已知A(2,3),B(8,-4),点G(2,-1)在中线AD上,且|AG|=2|GD|,则C的坐标为______.答案:设C(x,y),则D(8+x2,-4+y2),再由AG=2GD,得(0,-4)=2(4+x2,-2+y2),∴4+x=0,-2+y=-4,即C(-4,-2)故为:(-4,-2).27.如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且

DF=CF=2,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为.答案:设AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=7228.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是______.答案:设M(0,y,0)由12+y2+4=1+(y+3)2+1可得y=-1故M(0,-1,0)故为:(0,-1,0).29.从5名男学生、3名女学生中选3人参加某项知识对抗赛,要求这3人中既有男生又有女生,则不同的选法共有()A.45种B.56种C.90种D.120种答案:由题意知本题是一个分类计数问题,要求这3人中既有男生又有女生包括两种情况,一是两女一男,二是两男一女,当包括两女一男时,有C32C51=15种结果,当包括两男一女时,有C31C52=30种结果,∴根据分类加法得到共有15+30=45故选A.30.由数字0、1、2、3、4可组成不同的三位数的个数是()

A.100

B.125

C.64

D.80答案:A31.“△ABC中,若∠C=90°,则∠A、∠B都是锐角”的否命题为()

A.△ABC中,若∠C≠90°,则∠A、∠B都不是锐角

B.△ABC中,若∠C≠90°,则∠A、∠B不都是锐角

C.△ABC中,若∠C≠90°,则∠A、∠B都不一定是锐角

D.以上都不对答案:B32.已知向量=(2,4,x),=(2,y,2),若||=6,

⊥,则x+y的值是()

A.-3或1

B.3或1

C.-3

D.1答案:A33.某游泳馆出售冬季游泳卡,每张240元,其使用规定:不记名,每卡每次只限一人,每天只限一次.某班有48名同学,老师打算组织同学们集体去游泳,除需购买若干张游泳卡外,每次游泳还需包一辆汽车,无论乘坐多少名同学,每次的包车费均为40元.

若使每个同学游8次,每人最少应交多少元钱?答案:设买x张游泳卡,总开支为y元,则每批去x名同学,共需去48×8x=384x批,总开支又分为:①买卡所需费用240x;②包车所需费用384x×40.∴y=240x+384x×40(0<x≤48,x∈Z).因此,y=240(x+64x)≥240×2x?64x=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论