2023年广东南华工商职业学院高职单招(数学)试题库含答案解析_第1页
2023年广东南华工商职业学院高职单招(数学)试题库含答案解析_第2页
2023年广东南华工商职业学院高职单招(数学)试题库含答案解析_第3页
2023年广东南华工商职业学院高职单招(数学)试题库含答案解析_第4页
2023年广东南华工商职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年广东南华工商职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.直线(t为参数)的倾斜角等于()

A.

B.

C.

D.答案:A2.若向量a,b,c满足a∥b且a⊥c,则c(a+2b)=______.答案:∵a∥b∴存在λ使b=λa∵a⊥c∴a?c=0∴c?(a+2b)=c?a+2c?b=2c?λa=0故为:0.3.摇奖器有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这3个小球上记号之和,求此次摇奖获得奖金数额的数学期望.答案:设此次摇奖的奖金数额为ξ元,当摇出的3个小球均标有数字2时,ξ=6;当摇出的3个小球中有2个标有数字2,1个标有数字5时,ξ=9;当摇出的3个小球有1个标有数字2,2个标有数字5时,ξ=12.所以,P(ξ=6)=C38C310=715P(ξ=9)=C28C12C310=715P(ξ=12)=C18C22C310=115Eξ=6×715+9×715+12×115=395(元)

答:此次摇奖获得奖金数额的数字期望是395元.4.用A、B、C三类不同的元件连接成两个系统N1、N2当元件A、B、C都正常工作时,系统N1正常工作,当元件A正常工作且元件B、C至少有一个正常工作时,系统N2正常工作。已知元件A、B、C正常工作的概率依次为0.80,0.90,0.90,分别求系统N1、N2正常工作的概率.

答案:0.792解析:解:分别记三个元件A、B、C能正常工作为事件A、B、C,由题意,这三个事件相互独立,系统N1正常工作的概率为P(A·B·C)=P(A)·P(B)·P(C)=0.8´0.9´0.9=0.648系统N2中,记事件D为B、C至少有一个正常工作,则P(D)=1–P()="1–"P()·P()=1–(1–0.9)´(1–0.9)=0.99系统N2正常工作的概率为P(A·D)=P(A)·P(D)=0.8´0.99=0.792。5.下列各量:①密度

②浮力

③风速

④温度,其中是向量的个数有()个.A.1B.3C.2D.4答案:根据向量的定义,知道需要同时具有大小和方向两个要素才是向量,在所给的四个量中,密度只有大小,浮力既有大小又有方向,风速既有大小又有方向,温度只有大小没有方向综上可知向量的个数是2个,故选C.6.如图,直线AB是平面α的斜线,A为斜足,若点P在平面α内运动,使得点P到直线AB的距离为定值a(a>0),则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线答案:因为点P到直线AB的距离为定值a,所以,P点在以AB为轴的圆柱的侧面上,又直线AB是平面α的斜线,且点P在平面α内运动,所以,可以理解为用用与圆柱底面不平行的平面截圆柱的侧面,所以得到的轨迹是椭圆.故选B.7.从5名男学生、3名女学生中选3人参加某项知识对抗赛,要求这3人中既有男生又有女生,则不同的选法共有()A.45种B.56种C.90种D.120种答案:由题意知本题是一个分类计数问题,要求这3人中既有男生又有女生包括两种情况,一是两女一男,二是两男一女,当包括两女一男时,有C32C51=15种结果,当包括两男一女时,有C31C52=30种结果,∴根据分类加法得到共有15+30=45故选A.8.探照灯反射镜的纵断面是抛物线的一部分,光源在抛物线的焦点,已知灯口直径是60

cm,灯深40

cm,则光源到反射镜顶点的距离是

______cm.答案:设抛物线方程为y2=2px(p>0),点(40,30)在抛物线y2=2px上,∴900=2p×40.∴p=454.∴p2=458.因此,光源到反射镜顶点的距离为458cm.9.如图,正六边形ABCDEF中,=()

A.

B.

C.

D.

答案:D10.设函数g(x)=ex

x≤0lnx,x>0,则g(g(12))=______.答案:g(g(12))

=g(ln12)

=eln12=12故为:12.11.某校有初中学生1200人,高中学生900人,教师120人,现用分层抽样方法从所有师生中抽取一个容量为n的样本进行调查,如果从高中学生中抽取60人,那么n=______.答案:每个个体被抽到的概率等于60900=115.故n=(1200+900+120)×115=1220×115=148,故为:148.12.确定方程3x2-9+4x2-16+5x2-25=120x的解集______.答案:由题意,x2-9≥0x2-16≥0x2-25≥0x>0,∴x≥5∴x2-9≥4,x2-16≥3,x2-25≥0,∴3x2-9+4x2-16+5x2-25≥24∵3x2-9+4x2-16+5x2-25=120x∴120x≥24∵x≥5,∴120x≤24∴120x=24∴x=5故为:{5}13.随机变量ξ的分布列为k=1、2、3、4,c为常数,则P(<ξ<)的值为()

A.

B.

C.

D.答案:B14.点P(x,y)是椭圆2x2+3y2=12上的一个动点,则x+2y的最大值为______.答案:把椭圆2x2+3y2=12化为标准方程,得x26+y24=1,∴这个椭圆的参数方程为:x=6cosθy=2sinθ,(θ为参数)∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故为:22.15.4个人各写一张贺年卡,集中后每人取一张别人的贺年卡,共有______种取法.答案:根据分类计数问题,可以列举出所有的结果,1甲乙互换,丙丁互换2甲丙互换,乙丁互换3甲丁互换,乙丙互换4甲要乙的乙要丙的丙要丁的丁要甲的5甲要乙的乙要丁的丙要甲的丁要丙的6甲要丙的丙要乙的乙要丁的丁要甲的7甲要丙的丙要丁的乙要丁的丁要甲的8甲要丁的丁要乙的乙要丙的丙要甲的9甲要丁的丁要丙的乙要甲的丙要乙的通过列举可以得到共有9种结果,故为:916.如图所示,已知PA切圆O于A,割线PBC交圆O于B、C,PD⊥AB于D,PD与AO的延长线相交于点E,连接CE并延长交圆O于点F,连接AF.

(1)求证:B,C,E,D四点共圆;

(2)当AB=12,tan∠EAF=23时,求圆O的半径.答案:(1)由切割线定理PA2=PB?PC由已知易得Rt△PAD∽Rt△PEA,∴PA2=PD?PE,∴PA2=PB?PC=PA2=PD?PE,又∠BPD为公共角,∴△PBD∽△PEC,∴∠BDP=∠C∴B,C,E,D四点共圆

(2)作OG⊥AB于G,由(1)知∠PBD=∠PEC,∵∠PBD=∠F,∴∠F=∠PEC,∴PE∥AF.∵AB=12,∴AG=6.∵PD⊥AB,∴PD∥OG.∴PE∥OG∥AF,∴∠AOG=∠EAF.在Rt△AOG中,tan∠AOG=tan∠EAF=23=6OG,∴OG=9∴R=AO=AG2+OG2=313∴圆O的半径313.17.(1+2x)10的展开式的第4项是______.答案:(1+2x)10的展开式的第4项为T4=C310

(2X)3=960x3,故为960x3.18.已知x、y之间的一组数据如下:

x0123y8264则线性回归方程y=a+bx所表示的直线必经过点()A.(0,0)B.(2,6)C.(1.5,5)D.(1,5)答案:∵.x=0+1+2+34=1.5,.y=8+2+6+44=5∴线性回归方程y=a+bx所表示的直线必经过点(1.5,5)故选C19.若双曲线的渐近线方程为y=±3x,它的一个焦点是(10,0),则双曲线的方程是______.答案:因为双曲线的渐近线方程为y=±3x,则设双曲线的方程是x2-y29=λ,又它的一个焦点是(10,0)故λ+9λ=10∴λ=1,x2-y29=1故为:x2-y29=120.设函数f(x)=(2a-1)x+b是R上的减函数,则a的范围为______.答案:∵f(x)=(2a-1)x+b是R上的减函数,∴2a-1<0,解得a<12.故为:a<12.21.(选做题)

设集合A={x|x2﹣5x+4>0},B={x|x2﹣2ax+(a+2)=0},若A∩B≠,求实数a的取值范围.答案:解:A={x|x2﹣5x+4>0}={x|x<1或x>4}.∵A∩B≠,∴方程x2﹣2ax+(a+2)=0有解,且至少有一解在区间(﹣∞,1)∪(4,+∞)内直接求解情况比较多,考虑补集设全集U={a|△≥0}=(﹣∞,﹣1]∪[2,+∞),P={a|方程x2﹣2ax+(a+2)=0的两根都在[1,4]内}记f(x)=x2﹣2ax+(a+2),且f(x)=0的两根都在[1,4]内∴,∴,∴,∴∴实数a的取值范围为.22.关于如图所示几何体的正确说法为______.

①这是一个六面体;

②这是一个四棱台;

③这是一个四棱柱;

④这是一个四棱柱和三棱柱的组合体;

⑤这是一个被截去一个三棱柱的四棱柱.答案:①因为有六个面,属于六面体的范围,②这是一个很明显的四棱柱,因为侧棱的延长线不能交与一点,所以不正确.③如果把几何体放倒就会发现是一个四棱柱,④可以有四棱柱和三棱柱组成,⑤和④的想法一样,割补方法就可以得到.故为:①③④⑤.23.某厂一批产品的合格率是98%,检验单位从中有放回地随机抽取10件,则计算抽出的10件产品中正品数的方差是______.答案:用X表示抽得的正品数,由于是有放回地随机抽取,所以X服从二项分布B(10,0.98),所以方差D(X)=10×0.98×0.02=0.196故为:0.196.24.已知:如图,CD是⊙O的直径,AE切⊙O于点B,DC的延长线交AB于点A,∠A=20°,则

∠DBE=______.答案:连接BC,∵CD是⊙O的直径,∴∠CBD=90°,∵AE是⊙O的切线,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°---(1),∠A+∠2=∠1----(2),(1)-(2)得∠1=55°即∠DBE=55°.故为:∠DBE=55°.25.如图,正方体ABCD-A1B1C1D1中,点E是棱BC的中点,点F

是棱CD上的动点.

(Ⅰ)试确定点F的位置,使得D1E⊥平面AB1F;

(Ⅱ)当D1E⊥平面AB1F时,求二面角C1-EF-A的余弦值以及BA1与面C1EF所成的角的大小.答案:(I)由题意可得:以A为原点,分别以直线AB、AD、AA1为x轴、y轴、z轴建立空间直角坐标系,不妨设正方体的棱长为1,且DF=x,则A1(0,0,1),A(0,0,0),B(1,0,0),D(0,1,0),B1(1,0,1),D1(0,1,1),E(1,12,0),F(x,1,0)所以D1E=(1,-12,-1),AB1=(1,0,1),AF=(x,1,0)由D1E⊥面AB1F⇔D1E⊥AB1且D1E⊥AF,所以D1E•AB1=0D1E•AF=0,可解得x=12所以当点F是CD的中点时,D1E⊥平面AB1F.(II)当D1E⊥平面AB1F时,F是CD的中点,F(12,1,0)由正方体的结构特征可得:平面AEF的一个法向量为m=(0,0,1),设平面C1EF的一个法向量为n=(x,y,z),在平面C1EF中,EC1=(0,12,1),EF=(-12,12,0),所以EC1•n=0EF•n

=0,即y=-2zx=y,所以取平面C1EF的一个法向量为n=(2,2,-1),所以cos<m,n>=-13,所以<m,n>=π-arccos13,又因为当把m,n都移向这个二面角内一点时,m背向平面AEF,而n指向平面C1EF,所以二面角C1-EF-A的大小为π-arccos13又因为BA1=(-1,0,1),所以cos<BA1,n>=-22,所以<BA1,n>=135∘,∴BA1与平面C1EF所成的角的大小为45°.26.下面对算法描述正确的一项是:()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同答案:算法的特点:有穷性,确定性,顺序性与正确性,不唯一性,普遍性算法可以用自然语言、图形语言,程序语言来表示,故A、B不对同一问题可以用不同的算法来描述,但结果一定相同,故D不对.C对.故应选C.27.一个完整的程序框图至少应该包含______.答案:完整程序框图必须有起止框,用来表示程序的开始和结束,还要包括处理框,用来处理程序的执行.故为:起止框、处理框.28.已知平行四边形的三个顶点A(-2,1),B(-1,3),C(3,4),求第四个顶点D的坐标.答案:若构成的平行四边形为ABCD1,即AC为一条对角线,设D1(x,y),则由AC中点也是BD1中点,可得

-2+32=x-121+42=y+32,解得

x=2y=2,∴D1(2,2).同理可得,若构成以AB为对角线的平行四边形ACBD2,则D2(-6,0);以BC为对角线的平行四边形ACD3B,则D3(4,6),∴第四个顶点D的坐标为:(2,2),或(-6,0),或(4,6).29.以A(1,5)、B(5,1)、C(-9,-9)为顶点的三角形是()

A.等边三角形

B.等腰三角形

C.不等边三角形

D.直角三角形答案:B30.复数,且A+B=0,则m的值是()

A.

B.

C.-

D.2答案:C31.一圆锥侧面展开图为半圆,平面α与圆锥的轴成45°角,则平面α与该圆锥侧面相交的交线为()A.圆B.抛物线C.双曲线D.椭圆答案:设圆锥的母线长为R,底面半径为r,则:πR=2πr,∴R=2r,∴母线与高的夹角的正弦值=rR=12,∴母线与高的夹角是30°.由于平面α与圆锥的轴成45°>30°;则平面α与该圆锥侧面相交的交线为椭圆.故选D.32.下列命题错误的是(

)A.命题“若,则中至少有一个为零”的否定是:“若,则都不为零”。B.对于命题,使得;则是,均有。C.命题“若,则方程有实根”的逆否命题为:“若方程无实根,则”。D.“”是“”的充分不必要条件。答案:A解析:命题的否定是只否定结论,∴选A.33.若矩阵A=是表示我校2011届学生高二上学期的期中成绩矩阵,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含义如下:i=1表示语文成绩,i=2表示数学成绩,i=3表示英语成绩,i=4表示语数外三门总分成绩j=k,k∈N*表示第50k名分数.若经过一定量的努力,各科能前进的名次是一样的.现小明的各科排名均在250左右,他想尽量提高三门总分分数,那么他应把努力方向主要放在哪一门学科上()

A.语文

B.数学

C.外语

D.都一样答案:B34.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量,得如下所示的统计图,根据统计图:

(1)甲、乙两个网站点击量的极差,中位数分别是多少?

(2)甲网站点击量在[10,40]间的频率是多少?(结果用分数表示)

(3)甲、乙两个网站哪个更受欢迎?并说明理由。答案:解:(1)甲网站的极差为73-8=65,乙网站的极差为71-5=66;甲网站的中位数是56.5,乙网站的中位数是36.5。(2)甲网站点击量在[10,40]间的频率是;(3)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,甲网站更受欢迎。35.两个正方体M1、M2,棱长分别a、b,则对于正方体M1、M2有:棱长的比为a:b,表面积的比为a2:b2,体积比为a3:b3.我们把满足类似条件的几何体称为“相似体”,下列给出的几何体中是“相似体”的是()

A.两个球

B.两个长方体

C.两个圆柱

D.两个圆锥答案:A36.已知一个几何体是由上下两部分构成的一个组合体,其三视图如图所示,则这个组合体的上下两部分分别是(

)答案:A37.如图,点O是正六边形ABCDEF的中心,则以图中点A、B、C、D、E、F、O中的任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量外,与向量共线的向量共有()

A.2个

B.3个

C.6个

D.9个

答案:D38.用反证法证明命题“若a、b∈N,ab能被2整除,则a,b中至少有一个能被2整除”,那么反设的内容是______.答案:根据用反证法证明数学命题的步骤,应先假设要证命题的否定成立,而要证命题的否定为:“a,b都不能被2整除”,故为:a、b都不能被2整除.39.已知平行直线l1:x-y+1=0与l2:x-y+3=0,求l1与l2间的距离.答案:∵已知平行直线l1:x-y+1=0与l2:x-y+3=0,则l1与l2间的距离d=|3-1|2=2.40.过点(2,4)作直线与抛物线y2=8x只有一个公共点,这样的直线有()

A.1条

B.2条

C.3条

D.4条答案:B41.一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n次终止的概率是(n=1,2,3,…).记X为原物体在分裂终止后所生成的子块数目,则P(X≤10)=()

A.

B.

C.

D.以上均不对答案:A42.若方程Ax2+By2=1表示焦点在y轴上的双曲线,则A、B满足的条件是()

A.A>0,且B>0

B.A>0,且B<0

C.A<0,且B>0

D.A<0,且B<0答案:C43.如图,CD是⊙O的直径,AE切⊙O于点B,连接DB,若∠D=20°,则∠DBE的大小为()

A.20°

B.40°

C.60°

D.70°答案:D44.袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是()

A.

B.

C.

D.答案:C45.过点(-3,-1),且与直线x-2y=0平行的直线方程为______.答案:直线l经过点(-3,-1),且与直线x-2y=0平行,直线的斜率为12所以直线l的方程为:y+1=12(x+3)即x-2y+1=0.故为:x-2y+1=0.46.设α∈[0,π],则方程x2sinα+y2cosα=1不能表示的曲线为()

A.椭圆

B.双曲线

C.抛物线

D.圆答案:C47.直线kx-y+1=3k,当k变动时,所有直线都通过定点[

]

A.(3,1)

B.(0,1)

C.(0,0)

D.(2,1)答案:A48.若集合A={1,2,3},则集合A的真子集共有()A.3个B.5个C.7个D.8个答案:由集合A={1,2,3},所以集合A的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7个.故选C.49.对于各数互不相等的整数数组(i1,i2,i3,…in)

(n是不小于2的正整数),对于任意p,q∈1,2,3,…,n,当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,则数组(2,4,3,1)中的逆序数等于______.答案:由题意知当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,在数组(2,4,3,1)中逆序有2,1;4,3;4,1;3,1共有4对逆序数对,故为:4.50.已知O、A、M、B为平面上四点,且,则()

A.点M在线段AB上

B.点B在线段AM上

C.点A在线段BM上

D.O、A、M、B四点一定共线答案:B第2卷一.综合题(共50题)1.椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为()

A.

B.

C.2

D.4答案:A2.在四边形ABCD中,若=+,则()

A.ABCD为矩形

B.ABCD是菱形

C.ABCD是正方形

D.ABCD是平行四边形答案:D3.△ABC中,∠A外角的平分线与此三角形外接圆相交于P,求证:BP=CP.

答案:证明:∠CBP=∠CAP=∠PAD又∠1=∠2由∠CAD=∠ACB+∠CBA=∠ACB+∠CBP+∠2=∠ACB+∠1+∠CBP=∠BCP+∠CBP∴∠BCP=∠CBP,∴BP=CP.4.两不重合直线l1和l2的方向向量分别为答案:∵直线l1和l2的方向向量分别为5.方程2x2+ky2=1表示的曲线是长轴在y轴的椭圆,则实数k的范围是()A.(0,+∞)B.(2,+∞)C.(0,2)D.(2,0)答案:椭圆方程化为x212+y21k=1.焦点在y轴上,则1k>12,即k<2.又k>0,∴0<k<2.故选C.6.不等式3≤|5-2x|<9的解集为()

A.[-2,1)∪[4,7)

B.(-2,1]∪(4,7]

C.(-2,-1]∪[4,7)

D.(-2,1]∪[4,7)答案:D7.如图,AB是半圆O的直径,C、D是半圆上的两点,半圆O的切线PC交AB的延长线于点P,∠PCB=25°,则∠ADC为()

A.105°

B.115°

C.120°

D.125°

答案:B8.已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为______.答案:因为A(0,4)和点B(1,2),所以直线AB的斜率k=2-41-0=-2故为:-29.Direchlet函数定义为:D(t)=1,t∈Q0,t∈CRQ,关于函数D(t)的性质叙述不正确的是()A.D(t)的值域为{0,1}B.D(t)为偶函数C.D(t)不是周期函数D.D(t)不是单调函数答案:函数D(t)是分段函数,值域是两段的并集,所以值域为{0,1};有理数和无理数正负关于原点对称,所以函数D(t)的图象关于y轴对称,所以函数是偶函数;对于不同的有理数x对应的函数值相等,所以函数不是单调函数;因为任取一个非0有理数,都有有理数加有理数为有理数,有理数加无理数为无理数,所以函数D(t)的图象周期出现,所以函数是周期函数,所以选项C不正确.故选C.10.如图所示,面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,4),此四边形内任一点P到第i条边的距离记为hi(i=1,2,3,4),若a11=a22=a33=a44=k,则4

i=1(ihi)=2Sk.类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若S11=S22=S33=S44=K,则4

i=1(iHi)=()A.4VKB.3VKC.2VKD.VK答案:根据三棱锥的体积公式V=13Sh得:13S1H1+13S2H2+13S3H3+13S4H4=V,即S1H1+2S2H2+3S3H3+4S4H4=3V,∴H1+2H2+3H3+4H4=3VK,即4i=1(iHi)=3VK.故选B.11.已知向量a=(2,4),b=(1,1),若向量b⊥(a+λb),则实数λ的值是

______.答案:a+λb=(2,4)+λ(1,1)=(2+λ,4+λ).∵b⊥(a+λb),∴b•(a+λb)=0,即(1,1)•(2+λ,4+λ)=2+λ+4+λ=6+2λ=0,∴λ=-3.故:-312.已知点A(5,0)和⊙B:(x+5)2+y2=36,P是⊙B上的动点,直线BP与线段AP的垂直平分线交于点Q.

(1)证明点Q的轨迹是双曲线,并求出轨迹方程.

(2)若(BQ+BA)•QA=0,求点Q的坐标.答案:(1)∵点Q在线段AP的垂直平分线上,∴|QP|=|QA|,∴||BQ|-|PQ||=||BQ|-|AQ||=6.∴点Q的轨迹是以A、B为焦点的双曲线.(4′)其轨迹方程是x29-y216=1.(7′)(2)以A、B、Q为三个顶点作平行四边形ABQC,则BQ+BA=BC∵(BQ+BA)•QA=0,∴BC•QC=0,∴平行四边形ABQC是菱形,∴|BA|=|BQ|.(8′)∴点Q在圆(x+5)2+y2=100上.解方程组(x+5)2+y2=100x29-y216=1.(10′)得Q(-395,±485)或Q(215,±865).(12′)13.两条平行线l1:3x+4y-2=0,l2:9x+12y-10=0间的距离等于()

A.

B.

C.

D.答案:C14.设a,b是不共线的两个向量,已知=2+m,=+,=-2.若A,B,D三点共线,则m的值为()

A.1

B.2

C.-2

D.-1答案:D15.从甲乙丙三人中任选两名代表,甲被选中的概率为()A.12B.13C.23D.1答案:从3个人中选出2个人当代表,则所有的选法共有3种,即:甲乙、甲丙、乙丙,其中含有甲的选法有两种,故甲被选中的概率是23,故选C.16.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i为虚数单位),求复数z2+i的虚部.

(Ⅱ)已知z1=a+2i,z2=3-4i(i为虚数单位),且z1z2为纯虚数,求实数a的值.答案:(Ⅰ)设z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,复数z2+i=3+4i2+i=2+i,虚部为1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2为纯虚数则3a-8=0,且4a+6≠0,解得a=8317.如图所示的圆盘由八个全等的扇形构成,指针绕中心旋转,可能随机停止,则指针停止在阴影部分的概率为()A.12B.14C.16D.18答案:如图:转动转盘被均匀分成8部分,阴影部分占1份,则指针停止在阴影部分的概率是P=18.故选D.18.将程序补充完整

INPUT

x

m=xMOD2

IF______THEN

PRINT“x是偶数”

ELSE

PRINT“x是奇数”

END

IF

END.答案:本程序的作用是判断出输入的数是奇数还是偶数,由其逻辑关系知,若逻辑是“是”则输出“x是偶数”,若逻辑是“否”,则输出“x是奇数”故判断条件应为m=0故为m=019.回归直线方程必定过点()A.(0,0)B.(.x,0)C.(0,.y)D.(.x,.y)答案:∵线性回归方程一定过这组数据的样本中心点,∴线性回归方程y=bx+a表示的直线必经过(.x,.y).故选D.20.①附中高一年级聪明的学生;

②直角坐标系中横、纵坐标相等的点;

③不小于3的正整数;

④3的近似值;

考察以上能组成一个集合的是______.答案:因为直角坐标系中横、纵坐标相等的点是确定的,所以②能构成集合;不小于3的正整数是确定的,所以③能构成集合;附中高一年级聪明的学生,不是确定的,原因是没法界定什么样的学生为聪明的,所以①不能构成集合;3的近似值没说明精确到哪一位,所以是不确定的,故④不能构成集合.21.直线3x+4y-7=0与直线6x+8y+3=0之间的距离是()

A.

B.2

C.

D.答案:C22.对于直线l的倾斜角α与斜率k,下列说法错误的是()

A.α的取值范围是[0°,180°)

B.k的取值范围是R

C.k=tanα

D.当α∈(90°,180°)时,α越大k越大答案:C23.某制药厂为了缩短培养时间,决定优选培养温度,试验范围定为29℃至50℃,现用分数法确定最佳温度,设第1,2,3次试验的温度分别为x1,x2,x3,若第2个试点比第1个试点好,则x3的值为(

)。答案:34℃或45℃24.AB是圆O的直径,EF切圆O于C,AD⊥EF于D,AD=2,AB=6,则AC长为()

A.

B.3

C.2

D.2答案:A25.已知空间四边形ABCD中,M、G分别为BC、CD的中点,则等于()

A.

B.

C.

D.

答案:A26.如图,AB是圆O的直径,CD是圆O的弦,AB与CD交于E点,且AE:EB=3:1、CE:ED=1:1,CD=83,则直径AB的长为______.答案:由CE:ED=1:1,CD=83,∴CE=ED=43由相交弦定理可得AE?EB=CE?ED及AE:EB=3:1∴3EB2=43?43=48解得EB=4,AE=12∴AB=AE+EB=16故为:1627.如图为一个求50个数的平均数的程序,在横线上应填充的语句为()

A.i>50

B.i<50

C.i>=50

D.i<=50

答案:A28.下列函数f(x)与g(x)表示同一函数的是

()A.f(x)=x0与g(x)=1B.f(x)=2lgx与g(x)=lgx2C.f(x)=|x|与g(x)=(x)2D.f(x)=x与g(x)=3x3答案:A、∵f(x)=x0,其定义域为{x|x≠0},而g(x)的定义域为R,故A错误;B、∵f(x)=2lgx,的定义域为{x|x>0},而g(x)=lgx2的定义域为R,故B错误;C、∵f(x)=|x|与g(x)=(x)2=x,其中f(x)的定义域为R,g(x)的定义域为{x|x≥0},故C错误;D、∵f(x)=x与g(x)=3x3=x,其中f(x)与g(x)的定义域为R,故D正确.故选D.29.对于空间四点A、B、C、D,命题p:AB=xAC+yAD,且x+y=1;命题q:A、B、C、D四点共面,则命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:根据命题p:AB=xAC+yAD,且x+y=1,可得AB

、AC

、AD

共面,从而可得命题q:A、B、C、D四点共面成立,故命题p是命题q的充分条件.根据命题q:A、B、C、D四点共面,可得A、B、C、D四点有可能在同一条直线上,若AB=xAC+yAD,则x+y不一定等于1,故命题p不是命题q的必要条件.综上,可得命题p是命题q的充分不必要条件.故选:A.30.安排6名演员的演出顺序时,要求演员甲不第一个出场,也不最后一个出场,则不同的安排方法种数是()

A.120

B.240

C.480

D.720答案:C31.某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,按以往比赛经验,甲胜乙的概率为23.

(1)求比赛三局甲获胜的概率;

(2)求甲获胜的概率;

(3)设甲比赛的次数为X,求X的数学期望.答案:记甲n局获胜的概率为Pn,n=3,4,5,(1)比赛三局甲获胜的概率是:P3=C33(23)3=827;(2)比赛四局甲获胜的概率是:P4=C23(23)3

(13)=827;比赛五局甲获胜的概率是:P5=C24(13)2(23)3=1681;甲获胜的概率是:P3+P4+P5=6481.(3)记乙n局获胜的概率为Pn′,n=3,4,5.P3′=C33(13)3=127,P4′=C23(13)3

(23)=227;P5′=C24(13)3(23)2=881;故甲比赛次数的分布列为:X345P(X)P3+P3′P4+P4′P5+P5′所以甲比赛次数的数学期望是:EX=3(127+827)+4(827+227)+5(1681+881

)=10727.32.如图所示,设k1,k2,k3分别是直线l1,l2,l3的斜率,则()

A.k1<k2<k3

B.k3<k1<k2

C.k3<k2<k1

D.k1<k3<k2

答案:C33.已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点A的横坐标为x1(x1>0),过点A作抛物线C的切线l1交x轴于点D,交y轴于点Q,交直线l:y=p2于点M,当|FD|=2时,∠AFD=60°.

(1)求证:△AFQ为等腰三角形,并求抛物线C的方程;

(2)若B位于y轴左侧的抛物线C上,过点B作抛物线C的切线l2交直线l1于点P,交直线l于点N,求△PMN面积的最小值,并求取到最小值时的x1值.答案:(1)设A(x1,x122p),则A处的切线方程为l1:y=x1px-x122p,可得:D(x12,0),Q(0,-x212p)∴|FQ|=p2+x212p=|AF|;∴△AFQ为等腰三角形.由点A,Q,D的坐标可知:D为线段AQ的中点,∴|AF|=4,得:p2+x212p=4x21+p2=16∴p=2,C:x2=4y.(2)设B(x2,y2)(x2<0),则B处的切线方程为y=x22x-x224联立y=x22x-x224y=x12x-x214得到点P(x1+x22,x1x24),联立y=x12x-x214y=1得到点M(x12+2x1,1).同理N(x22+2x2,1),设h为点P到MN的距离,则S△=12|MN|•h=12×(x12+2x1-x22-2x2)(1-x1x24)=(x2-x1)(4-x1x2)216x1x2

①设AB的方程为y=kx+b,则b>0,由y=kx+bx2=4y得到x2-4kx-4b=0,得x1+x2=4kx1x2=-4b代入①得:S△=16k2+16b(4+4b)264b=(1+b)2k2+bb,要使面积最小,则应k=0,得到S△=(1+b)2bb②令b=t,得S△(t)=(1+t2)2t=t3+2t+1t,则S′△(t)=(3t2-1)(t2+1)t2,所以当t∈(0,33)时,S(t)单调递减;当t∈(33,+∞)时,S(t)单调递增,所以当t=33时,S取到最小值为1639,此时b=t2=13,k=0,所以y1=13,解得x1=233.故△PMN面积取得最小值时的x1值为233.34.选修4-2:矩阵与变换

已知矩阵M=0110,N=0-110.在平面直角坐标系中,设直线2x-y+1=0在矩阵MN对应的变换作用下得到曲线F,求曲线F的方程.答案:由题设得MN=01100-111=100-1.…(3分)设(x,y)是直线2x-y+1=0上任意一点,点(x,y)在矩阵MN对应的变换作用下变为(x′,y′),则有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因为点(x,y)在直线2x-y+1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲线F的方程为2x+y+1=0.

…(10分)35.不等式0.52x>0.5x-1的解集为______.答案:由于函数y=0.5x

是R上的减函数,故由0.52x>0.5x-1可得2x<x-1,解得x<-1.故不等式0.52x>0.5x-1的解集为(-∞,-1),故为(-∞,-1).36.例3.设a>0,b>0,解关于x的不等式:|ax-2|≥bx.答案:原不等式|ax-2|≥bx可化为ax-2≥bx或ax-2≤-bx,(1)对于不等式ax-2≤-bx,即(a+b)x≤2

因为a>0,b>0即:x≤2a+b.(2)对于不等式ax-2≥bx,即(a-b)x≥2①当a>b>0时,由①得x≥2a-b,∴此时,原不等式解为:x≥2a-b或x≤2a+b;当a=b>0时,由①得x∈ϕ,∴此时,原不等式解为:x≤2a+b;当0<a<b时,由①得x≤2a-b,∴此时,原不等式解为:x≤2a+b.综上可得,当a>b>0时,原不等式解集为(-∞,2a+b]∪[2a-b,+∞),当0<a≤b时,原不等式解集为(-∞,2a+b].37.如图所示,判断正整数x是奇数还是偶数,(1)处应填______.答案:根据程序的功能是判断正整数x是奇数还是偶数,结合数的奇偶性的定义,我们可得当满足条件是x是奇数,不满足条件时x为偶数故(1)中应填写r=1故为:r=138.某研究小组在一项实验中获得一组数据,将其整理得到如图所示的散点图,下列函数中,最能近似刻画y与t之间关系的是()

A.y=2t

B.y=2t2

C.y=t3

D.y=log2t

答案:D39.若直线x+y=m与圆x=mcosφy=msinφ(φ为参数,m>0)相切,则m为

______.答案:圆x=mcosφy=msinφ的圆心为(0,0),半径为m∵直线x+y=m与圆相切,∴d=r即|m|2=m,解得m=2故为:240.一个完整的程序框图至少应该包含______.答案:完整程序框图必须有起止框,用来表示程序的开始和结束,还要包括处理框,用来处理程序的执行.故为:起止框、处理框.41.已知=(2,-1,3),=(-1,4,-2),=(7,5,λ),若、、三向量共面,则实数λ等于()

A.

B.

C.

D.答案:D42.已知有如下两段程序:

问:程序1运行的结果为______.程序2运行的结果为______.

答案:程序1是计数变量i=21开始,不满足i≤20,终止循环,累加变量sum=0,这个程序计算的结果:sum=0;程序2计数变量i=21,开始进入循环,sum=0+21=22,其值大于20,循环终止,累加变量sum从0开始,这个程序计算的是sum=21.故为:0;21.43.拟定从甲地到乙地通话m分钟的电话费由f(x)=1.06×(0.50×[m]+1)给出,其中m>0,[m]是大于或等于m的最小整数,若通话费为10.6元,则通话时间m∈______.答案:∵10.6=1.06(0.50×[m]+1),∴0.5[m]=9,∴[m]=18,∴m∈(17,18].故为:(17,18].44.直线kx-y+1=3k,当k变动时,所有直线都通过定点[

]

A.(3,1)

B.(0,1)

C.(0,0)

D.(2,1)答案:A45.若A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则A∩B=()

A.{2,1}

B.{(2,1)}

C.{1,2}

D.{(1,2)}答案:D46.函数f(x)=ax(a>0且a≠1)在区间[1,2]上的最大值比最小值大a2,则a的值为()A.32B.2C.12或32D.12答案:当a>1时,函数f(x)=ax(a>0且a≠1)在区间[1,2]上是增函数,由题意可得a2-a=a2,∴a=32.当1>a>0时,函数f(x)=ax(a>0且a≠1)在区间[1,2]上是减函数,由题意可得a-a2=a2,解得

a=12.综上,a的值为12或32故选C.47.若2x1+3y1=4,2x2+3y2=4,则过点A(x1,y1),B(x2,y2)的直线方程是______.答案:∵2x1+3y1=4,2x2+3y2=4,∴点A(x1,y1),B(x2,y2)在直线2x+3y=4上,又因为过两点确定一条直线,故所求直线方程为2x+3y=4故为:2x+3y=448.对于函数f(x),在使f(x)≤M成立的所有常数M中,我们把M的最小值称为函数f(x)的“上确界”则函数f(x)=(x+1)2x2+1的上确界为()A.14B.12C.2D.4答案:因为f(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因为x2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常数M中,M的最小值为2.故选C.49.设椭圆=1(a>b>0)的离心率为,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)()

A.必在圆x2+y2=2内

B.必在圆x2+y2=2上

C.必在圆x2+y2=2外

D.以上三种情形都有可能答案:A50.化简下列各式:

(1)AB+DF+CD+BC+FA=______;

(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故为:(1)0;(2)AC第3卷一.综合题(共50题)1.已知直线的倾斜角为α,且cosα=45,则此直线的斜率是______.答案:∵直线l的倾斜角为α,cosα=45,∴α的终边在第一象限,故sinα=35故l的斜率为tanα=sinαcosα=34故为:342.已知函数f(x)=2x,数列{an}满足a1=f(0),且f(an+1)=(n∈N*),

(1)证明数列{an}是等差数列,并求a2010的值;

(2)分别求出满足下列三个不等式:,

的k的取值范围,并求出同时满足三个不等式的k的最大值;

(3)若不等式对一切n∈N*都成立,猜想k的最大值,并予以证明。答案:解:(1)由,得,即,∴是等差数列,∴,∴。(2)由,得;,得;,得,,∴当k同时满足三个不等式时,。(3)由,得恒成立,令,则,,∴,∵F(n)是关于n的单调增函数,∴,∴。3.f(x)=(1+2x)m+(1+3x)n(m,n∈N*)的展开式中x的系数为13,则x2的系数为()A.31B.40C.31或40D.71或80答案:(1+2x)m的展开式中x的系数为2Cm1=2m,(1+3x)n的展开式中x的系数为3Cn1=3n∴3n+2m=13∴n=1m=5或n=3m=2(1+2x)m的展开式中的x2系数为22Cm2,(1+3x)n的展开式中的x2系数为32Cn2∴当n=1m=5时,x2的系数为22Cm2+32Cn2=40当n=3m=2时,x2的系数为22Cm2+32Cn2=31故选C.4.在正方体ABCD-A1B1C1D1中,直线BC1与平面A1BD所成角的余弦值是______.答案:分别以DA、DC、DD1为x、y、z轴建立如图所示空间直角坐标系设正方体的棱长等于1,可得D(0,0,0),B(1,1,0),C1(0,1,1),A1(1,0,1),∴BC1=(-1,0,1),A1D=(-1,0,-1),BD=(-1,-1,0)设n=(x,y,z)是平面A1BD的一个法向量,则n•A1D=-x-z=0n•BD=-x-y=0,取x=1,得y=z=-1∴平面A1BD的一个法向量为n=(1,-1,-1)设直线BC1与平面A1BD所成角为θ,则sinθ=|cos<BC1,n>|=BC1•n|BC1|•n=63∴cosθ=1-sin2θ=33,即直线BC1与平面A1BD所成角的余弦值是33故为:335.某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行.那么安排这6项工程的不同排法种数是______.(用数字作答)答案:依题意,乙必须在甲后,丙必须在乙后,丙丁必相邻,且丁在丙后,只需将剩余两个工程依次插在由甲、乙、丙丁四个工程之间即可,第一个插入时有4种,第二个插入时共5个空,有5种方法;可得有5×4=20种不同排法.故为:206.设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是()A.4B.6C.8D.12答案:抛物线y2=8x的准线为x=-2,∵点P到y轴的距离是4,∴到准线的距离是4+2=6,根据抛物线的定义可知点P到该抛物线焦点的距离是6故选B7.正方形ABCD中,AB=1,分别以A、C为圆心作两个半径为R、r(R>r)的圆,当R、r满足条件______时,⊙A与⊙C有2个交点(

A.R+r>

B.R-r<<R+r

C.R-r>

D.0<R-r<答案:B8.在直角坐标系xOy中,i,j分别是与x轴,y轴平行的单位向量,若在Rt△ABC中,AB=i+j,AC=2i+mj,则实数m=______.答案:把AB、AC平移,使得点A与原点重合,则AB=(1,1)、AC=(2,m),故BC=(1,m-1),若∠B=90°时,AB•BC=0,∴(1,1)•(2-1,m-1)=0,得m=0;若∠A=90°时,AB•AC=0,∴(1,1)•(2,m)=0,得m=-2.若∠C=90°时,AC•BC=0,即2+m2-m=0,此方程无解,综上,m为-2或0满足三角形为直角三角形.故为-2或09.设A(3,4),在x轴上有一点P(x,0),使得|PA|=5,则x等于()

A.0

B.6

C.0或6

D.0或-6答案:C10.如图,在直角坐标系中,A,B,C三点在x轴上,原点O和点B分别是线段AB和AC的中点,已知AO=m(m为常数),平面上的点P满足PA+PB=6m.

(1)试求点P的轨迹C1的方程;

(2)若点(x,y)在曲线C1上,求证:点(x3,y22)一定在某圆C2上;

(3)过点C作直线l,与圆C2相交于M,N两点,若点N恰好是线段CM的中点,试求直线l的方程.答案:(1)由题意可得点P的轨迹C1是以A,B为焦点的椭圆.…(2分)且半焦距长c=m,长半轴长a=3m,则C1的方程为x29m2+y28m2=1.…(5分)(2)若点(x,y)在曲线C1上,则x29m2+y28m2=1.设x3=x0,y22=y0,则x=3x0,y=22y0.…(7分)代入x29m2+y28m2=1,得x02+y02=m2,所以点(x3,y22)一定在某一圆C2上.…(10分)(3)由题意C(3m,0).…(11分)设M(x1,y1),则x12+y12=m2.…①因为点N恰好是线段CM的中点,所以N(x1+3m2,y12).代入C2的方程得(x1+3m2)2+(y12)2=m2.…②联立①②,解得x1=-m,y1=0.…(15分)故直线l有且只有一条,方程为y=0.…(16分)(若只写出直线方程,不说明理由,给1分)11.设随机变量X的分布列为P(X=k)=,k=1,2,3,4,5,则P()等于()

A.

B.

C.

D.答案:C12.若A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则A∩B=()

A.{2,1}

B.{(2,1)}

C.{1,2}

D.{(1,2)}答案:D13.已知F是抛物线C:y2=4x的焦点,过F且斜率为1的直线交C于A,B两点.设|FA|>|FB|,则|FA|与|FB|的比值等于______.答案:设A(x1,y1)B(x2,y2)由y=x-1y2=4x⇒x2-6x+1=0⇒x1=3+22,x2=3-22,(x1>x2)∴由抛物线的定义知|FA||FB|=x1+1x2+1=4+224-22=2+22-2=3+22故为:3+2214.将包含甲、乙两人的4位同学平均分成2个小组参加某项公益活动,则甲、乙两名同学分在同一小组的概率为()

A.

B.

C.

D.答案:C15.已知均为单位向量,且=,则,的夹角为()

A.

B.

C.

D.答案:C16.已知a=(1,0),b=(m,m)(m>0),则<a,b>=______.答案:∵b=(m,m)(m>0),∴b与第一象限的角平分线同向,且由原点指向远处,而a=(1,0)同横轴的正方向同向,∴<a,b>=45°,故为:45°17.天气预报说,在今后的三天中每一天下雨的概率均为40%,用随机模拟的方法进行试验,由1、2、3、4表示下雨,由5、6、7、8、9、0表示不下雨,利用计算器中的随机函数产生0~9之间随机整数的20组如下:

907966191925271932812458569683

431257393027556488730113537989

通过以上随机模拟的数据可知三天中恰有两天下雨的概率近似为(

)。答案:0.2518.直线(x+1)a+(y+1)b=0与圆x2+y2=2的位置关系是______.答案:直线(x+1)a+(y+1)b=0化为ax+by+(a+b)=0,所以圆心点到直线的距离d=|a+b|a2+b2=a2+b2+2aba2+b2≤2(a2+b2)a2+b2=2.所以直线(x+1)a+(y+1)b=0与圆x2+y2=2的位置关系是:相交或相切.故为:相交或相切.19.正十边形的一个内角是多少度?答案:由多边形内角和公式180°(n-2),∴每一个内角的度数是180°(n-2)n当n=10时.得到一个内角为180°(10-2)10=144°20.若随机变量X~B(5,12),那么P(X≤1)=______.答案:P(X≤1)=C06(12)0(12)6+C16(12)1(12)5=316故为:31621.将6位志愿者分成4组,每组至少1人,分赴世博会的四个不同场馆服务,不同的分配方案有______种(用数字作答).答案:由题意,六个人分为四组,若有三个人一组,则四组人数为3,1,1,1,则不同的分法为C63=20种,若存在两人一组,则分法为2,2,1,1,不同的分法有C26×C24A22=45分赴世博会的四个不同场馆服务,不同的分配方案有(20+45)×A44=1560种故为:1560.22.为了检测某种产品的直径(单位mm),抽取了一个容量为100的样本,其频率分布表(不完整)如下:

分组频数累计频数频率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)

(Ⅰ)完成频率分布表;

(Ⅱ)画出频率分布直方图;

(Ⅲ)据上述图表,估计产品直径落在[10.95,11.35)范围内的可能性是百分之几?答案:解(Ⅰ)分组频数累计频数频率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)72240.24[11.25,11.35)84120.12[11.35,11.45)9280.08[11.45,11.55)9860.06[11.55,11.65)10020.02(Ⅲ)0.15+0.18+0.24+0.12=0.69=69%,所以产品直径落在[10.95,11.35)范围内的可能性为69%.23.口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以ξ表示取出的球的最大号码,则Eξ的值是()A.4B.4.5C.4.75D.5答案:由题意,ξ的取值可以是3,4,5ξ=3时,概率是1C35=110ξ=4时,概率是C23C35=310(最大的是4其它两个从1、2、3里面随机取)ξ=5时,概率是C24C35=610(最大的是5,其它两个从1、2、3、4里面随机取)∴期望Eξ=3×110+4×310+5×610=4.5故选B.24.已知A,B,C三点不共线,O为平面ABC外一点,若由向量OP=15OA+23OB+λOC确定的点P与A,B,C共面,那么λ=______.答案:由题意A,B,C三点不共线,点O是平面ABC外一点,若由向量OP=15OA+23OB+λOC确定的点P与A,B,C共面,∴15+23+λ=1解得λ=215故为:21525.如图,△ABC中,AD=2DB,AE=3EC,CD与BE交于F,若AF=xAB+yAC,则()A.x=13,y=12B.x=14,y=13C.x=37,y=37D.x=25,y=920答案:过点F作FM∥AC、FN∥AB,分别交AB、AC于点M、N∵FM∥AC,∴FMAC=DMAD且FMAE=BMAB∵AD=2DB,AE=3EC,∴AD=23AB,AE=34AC.由此可得AM=13AB同理可得AN=12AC∵四边形AMFN是平行四边形∴由向量加法法则,得AF=13AB+12AC∵AF=xAB+yAC,∴根据平面向量基本定理,可得x=13,y=12故选:A26.不论k为何实数,直线y=kx+1与曲线x2+y2-2ax+a2-2a-4=0恒有交点,则实数a的取值范围是______.答案:直线y=kx+1恒过(0,1)点,与曲线x2+y2-2ax+a2-2a-4=0恒有交点,必须定点在圆上或圆内,即:a2+12

≤4+2a所以,-1≤a≤3故为:-1≤a≤3.27.设A、B为两个事件,若事件A和B同时发生的概率为310,在事件A发生的条件下,事件B发生的概率为12,则事件A发生的概率为______.答案:根据题意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故为:3528.(文)将图所示的一个直角三角形ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体的正视图是下面四个图形中的(

A.

B.

C.

D.

答案:B29.若向量=(2,-3,1),=(2,0,3),=(0,2,2),则(+)=()

A.4

B.15

C.7

D.3答案:D30.设O是坐标原点,F是抛物线y2=2px(p>0)的焦点,A是抛物线上的一个动点,FA与x轴正方向的夹角为60°,求|OA|的值.答案:由题意设A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(负值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p31.已知,求证:答案:证明略解析:∵

∴①

又∵②

③由①②③得

∴,又不等式①、②、③中等号成立的条件分别为,,故不能同时成立,从而.32.根据给出的程序语言,画出程序框图,并计算程序运行后的结果.

答案:程序框图:模拟程序运行:当j=1时,n=1,当j=2时,n=1,当j=3时,n=1,当j=4时,n=2,…当j=8时,n=2,…当j=11时,n=2,当j=12时,此时不满足循环条件,退出循环程序运行后的结果是:2.33.已知直线3x+4y-3=0与直线6x+my+14=0平行,则它们之间的距离是______.答案:直线3x+4y-3=0即6x+8y-6=0,它直线6x+my+14=0平行,∴m=8,则它们之间的距离是d=|c1-c2|a2+b2=|-6-14|62+82=2,故为:2.34.如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P,若PBPA=12,PCPD=13,则BCAD的值为______.答案:因为A,B,C,D四点共圆,所以∠DAB=∠PCB,∠CDA=∠PBC,因为∠P为公共角,所以△PBC∽△PAB,所以PBPD=PCPA=BCAD.设OB=x,PC=y,则有x3y=y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论