版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年山西交通职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.(几何证明选做题)如图,已知:△ABC内接于圆O,点D在OC的延长线上,AD是圆O的切线,若∠B=30°,AC=2,则OD的长为______.答案:∵AD是圆O的切线,∠B=30°∴∠DAC=30°,∴∠OAC=60°,∴△AOC是一个等边三角形,∴OA=OC=2,在直角三角形AOD中,OD=2AO=4,故为:4.2.一个箱子中装有质量均匀的10个白球和9个黑球,一次摸出5个球,在已知它们的颜色相同的情况下,该颜色是白色的概率是______.答案:10个白球中取5个白球有C105种9个黑球中取5个黑球有C95种∴一次摸出5个球,它们的颜色相同的有C105+C95种∴一次摸出5个球,在已知它们的颜色相同的情况下,该颜色是白色的概率=C510C510+C59=23故为:233.若向量a,b的夹角为120°,且|a|=1,|b|=2,c=a+b,则有()A.c⊥aB.c⊥bC.c‖bD.c‖a答案:由题意知ac=a
(a+b)=a2+
a
b=1+1×2cos120°=0,所以a⊥c.故选A.4.一个多面体的三视图分别是正方形、等腰三角形和矩形,其尺寸如图,则该多面体的体积为()A.48cm3B.24cm3C.32cm3D.28cm3答案:由三视图可知该几何体是平放的直三棱柱,高为4,底面三角形一边长为6,此边上的高为4体积V=Sh=12×6×4×4=48cm3故选A5.(《几何证明选讲》选做题)如图,在Rt△ABC中,∠C=90°,⊙O分别切AC、BC于M、N,圆心O在AB上,⊙O的半径为4,OA=5,则OB的长为______.答案:连接OM,ON,则∵⊙O分别切AC、BC于M、N∴OM⊥AC,ON⊥BC∵∠C=90°,∴OMCN为正方形∵⊙O的半径为4,OA=5∴AM=3∴CA=7∵ON∥AC∴ONAC=OBBA∴47=OBOB+5∴OB=203故为:2036.在平行六面体ABCD-A′B′C′D′中,若AC′=xAB+2yBC-3zC′C,则x+y+z等于______.答案:根据向量的加法法则可得,AC′=AC+CC′=AB+BC+CC′∵AC′=xAB+2yBC-3zC′C∴x=1,2y=1,-3z=1∴x=1,y=12,z=-13∴x+y+z=1+12-13=76故为:767.(文)对于任意的平面向量a=(x1,y1),b=(x2,y2),定义新运算⊕:a⊕b=(x1+x2,y1y2).若a,b,c为平面向量,k∈R,则下列运算性质一定成立的所有序号是______.
①a⊕b=b⊕a;
②(ka)⊕b=a⊕(kb);
③a⊕(b⊕c)=(a⊕b)⊕c;
④a⊕(b+c)=a⊕b+a⊕c.答案:①a⊕b=(x1+x2,y1y2)=(x2+x1,y2y1)=b⊕a,故正确;②∵(ka)⊕b=(kx1+x2,ky1y2),a⊕(kb)=(x1+kx2,y1ky2),∴(ka)⊕b≠a⊕(kb),故不正确;③设c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),(a⊕b)⊕c=(x1+x2,y1y2)⊕c=(x1+x2+x3,y1y2y3),∴a⊕(b⊕c)=(a⊕b)⊕c,故正确;④设c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),a⊕b+a⊕c=(x1+x2,y1y2)+(x1+x3,y1y3)=(2x1+x2+x3,y1(y2+y3)),∴a⊕(b⊕c)≠a⊕b+a⊕c,故不正确.综上可知:只有①③正确.故为①③.8.如图,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分别为AD,BC上点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为______.答案:∵E,F分别为AD,BC上点,且EF=3,EF∥AB,∴EF是梯形的中位线,设两个梯形的高是h,∴梯形ABFE的面积是(4+3)h2=7h2,梯形EFCD的面积(2+3)h2=5h2∴梯形ABFE与梯形EFCD的面积比为7h25h2=75,故为:7:59.用反证法证明命题“在函数f(x)=x2+px+q中,|f(1)|,|f(2)|,|f(3)|至少有一个不小于”时,假设正确的是()
A.假设|f(1)|,|f(2)|,|f(3)|至多有一个小于
B.假设|f(1)|,|f(2)|,|f(3)|至多有两个小于
C.假设|f(1)|,|f(2)|,|f(3)|都不小于
D.假设|f(1)|,|f(2)|,|f(3)|都小于答案:D10.如图,在正方体ABCD-A1B1C1D1中,M、N分别为AB、B1C的中点.用AB、AD、AA1表示向量MN,则MN=______.答案:∵MN=MB+BC+CN=12AB+AD+12(CB+BB1)=12AB+AD+12(-AD+AA1)=12AB+12AD+12AA1.故为12AB+12AD+12AA1.11.已知A(3,-2),B(-5,4),则以AB为直径的圆的方程是()A.(x-1)2+(y+1)2=25B.(x+1)2+(y-1)2=25C.(x-1)2+(y+1)2=100D.(x+1)2+(y-1)2=100答案:∵A(3,-2),B(-5,4),∴以AB为直径的圆的圆心为(-1,1),半径r=(-1-3)2+(1+2)2=5,∴圆的方程为(x+1)2+(y-1)2=25故选B.12.梯形ABCD中,AB∥CD,AB=2CD,E、F分别是AD,BC的中点,M、N在EF上,且EM=MN=NF,若AB=a,BC=b,则AM=______(用a,b表示).答案:连结CN并延长交AB于G,因为AB∥CD,AB=2CD,M、N在EF上,且EM=MN=NF,所以G为AB的中点,所以AC=12a+b,又E、F分别是AD,BC的中点,M、N在EF上,且EM=MN=NF,所以M为AC的中点,所以AM=12AC,所以AM=14a+12b.故为:14a+12b.13.命题:“如果ab=0,那么a、b中至少有一个等于0.”的逆否命题为______
______.答案:∵ab=0的否命题是ab≠0,a、b中至少有一个为零的否命题是a≠0,且b≠0,∴命题“若ab=0,则a、b中至少有一个为零”的逆否命题是“若a≠0,且b≠0,则ab≠0.”故:如果a、b都不为等于0.那么ab≠014.函数y=2x的值域为______.答案:因为:x≥0,所以:y=2x≥20=1.∴函数y=2x的值域为:[1,+∞).故为:[1,+∞).15.已知直线l的斜率为k=-1,经过点M0(2,-1),点M在直线上,以M0M的数量t为参数,则直线l的参数方程为______.答案:∵直线l经过点M0(2,-1),斜率为k=-1,倾斜角为3π4,∴直线l的参数方程为x=2+tcos3π4y=-1+tsin3π4
(t为参数);即为x=2-22ty=-1+22t(t为参数).故为:x=2-22ty=-1+22t(t为参数).16.已知当m∈R时,函数f(x)=m(x2-1)+x-a的图象和x轴恒有公共点,求实数a的取值范围.答案:(1)m=0时,f(x)=x-a是一次函数,它的图象恒与x轴相交,此时a∈R.(2)m≠0时,由题意知,方程mx2+x-(m+a)=0恒有实数解,其充要条件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0时,a∈R;m≠0时,a∈[-1,1].17.下列四个命题中,正确的有
个
①;
②;
③,使;
④,使为29的约数.答案:两解析::①∵(-3)2-4×2×40,∴①正确;②∵2×(-1)+1=-1x,∴③不正确;④x=1是29的约数,∴④正确;∴正确的有两个点评:本题考查全称命题、特称命题,容易题18.若向量a=(2,-3,3)是直线l的方向向量,向量b=(1,0,0)是平面α的法向量,则直线l与平面α所成角的大小为______.答案:设直线l与平面α所成角为θ,则sinθ=|cos<a,b>|=|a•b||a|
|b|=222+(-3)2+(3)2×1=12,∵θ∈[0,π2],∴θ=π6,即直线l与平面α所成角的大小为π6.故为π6.19.已知非零向量,若与互相垂直,则=(
)
A.
B.4
C.
D.2答案:D20.根据一组数据判断是否线性相关时,应选用(
)
A.散点图
B.茎叶图
C.频率分布直方图
D.频率分布折线图答案:A21.定义:若函数f(x)对于其定义域内的某一数x0,有f(x0)=x0,则称x0是f(x)的一个不动点。
已知函数f(x)=ax2+(b+1)x+b-1(a≠0)。
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)若对任意的实数b,函数f(x)恒有两个不动点,求a的取值范围;
(3)在(2)的条件下,若y=f(x)图象上两个点A、B的横坐标是函数f(x)的不动点,且A、B的中点C在函数g(x)=-x+的图象上,求b的最小值。
(参考公式:A(x1,y1),B(x2,y2)的中点坐标为)
答案:解:(1)f(x)=x2-x-3,由x2-x-3=0,解得x=3或x=-1,所以所求的不动点为-1或3。(2)令ax2+(b+1)x+b+1=x,则ax2+bx+b-1=0,①由题意,方程①恒由两个不等实根,所以△=b2-4a(b-1)>0,即b2-4ab+4a>0对任意的b∈R恒成立,则△′=16a2-16a<0,故0(3)依题意,设,则AB中点C的坐标为,又AB的中点在直线上,∴,∴,又x1,x2是方程①的两个根,∴,∴,,∴,∴当时,bmin=-1。</a<1。22.设函数f(x)=(2a-1)x+b是R上的减函数,则a的范围为______.答案:∵f(x)=(2a-1)x+b是R上的减函数,∴2a-1<0,解得a<12.故为:a<12.23.已知向量a=(0,-1,1),b=(4,1,0),|λa+b|=57且λ>0,则λ=______.答案:∵λa+b=λ(0,-1,1)+(4,1,0)=(4,1-λ,λ),|λa+b|=57,∴42+(1-λ)2+λ2=57,化为λ2-λ-20=0,又λ>0,解得λ=5.故为5.24.已知二项分布ξ~B(4,12),则该分布列的方差Dξ值为______.答案:∵二项分布ξ~B(4,12),∴该分布列的方差Dξ=npq=4×12×(1-12)=1故为:125.已知命题p、q,若命题“p∨q”与命题“¬p”都是真命题,则()A.命题q一定是真命题B.命题q不一定是真命题C.命题p不一定是假命题D.命题p与命题q的真值相等答案:∵命题“¬p”与命题“p∨q”都是真命题,∴命题p为假命题,q为真命题.故选A.26.已知z是纯虚数,z+21-i是实数,则z=______.答案:令Z=bi,则z+21-i=(2+bi)(1+i)(1-i)(1+i)=(2-b)+(2+b)i2又z+21-i是实数,故b=-2则Z=-2i故为:-2i27.已知曲线C1,C2的极坐标方程分别为ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<π2),则曲线C1与C2交点的极坐标为______.答案:我们通过联立解方程组ρcosθ=3ρ=4cosθ(ρ≥0,0≤θ<π2)解得ρ=23θ=π6,即两曲线的交点为(23,π6).故填:(23,π6).28.设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,则在映射f下,象20的原象是()A.2B.3C.4D.5答案:由2n+n=20求n,用代入法可知选C.故选C29.设a=0.7,b=0.8,c=log30.7,则()
A.c<b<a
B.c<a<b
C.a<b<c
D.b<a<c答案:B30.点P(x,y)是椭圆2x2+3y2=12上的一个动点,则x+2y的最大值为______.答案:把椭圆2x2+3y2=12化为标准方程,得x26+y24=1,∴这个椭圆的参数方程为:x=6cosθy=2sinθ,(θ为参数)∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故为:22.31.已知方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,求实数k的取值范围.答案:令f(x)=x2-(k2-9)x+k2-5k+6,则∵方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,∴f(1)<0
且f(2)<0,∴12-(k2-9)+k2-5k+6<0且22-2(k2-9)+k2-5k+6<0,即16-5k<0且k2+5k-28>0,解得k>137-52.32.下面是一个算法的伪代码.如果输出的y的值是10,则输入的x的值是______.答案:由题意的程序,若x≤5,y=10x,否则y=2.5x+5,由于输出的y的值是10,当x≤5时,y=10x=10,得x=1;当x>5时,y=2.5x+5=10,得x=2,不合,舍去.则输入的x的值是1.故为:1.33.(坐标系与参数方程选做题)
直线x=-2+ty=1-t(t为参数)被圆x=3+5cosθy=-1+5sinθ(θ为参数,θ∈[0,2π))所截得的弦长为______.答案:直线和圆的参数方程化为普通方程得x+y+1=0,(x-3)2+(y+1)2=25,于是弦心距d=322,弦长l=225-92=82.故为:8234.如图,PA、PB、DE分别与⊙O相切,若∠P=40°,则∠DOE等于()度.
A.40
B.50
C.70
D.80
答案:C35.若x,y∈R,x>0,y>0,且x+2y=1,则xy的最大值为______.答案:∵x,y∈R,x>0,y>0,且x+2y=1,∴1=x+2y≥2x?2y,∴22×xy≤1,∴xy≤
122=24,所以xy≤18.当且仅当x=2yx+2y=1时,即x=12,y=14时,取等号.故为:18.36.棱长为2的正方体ABCD-A1B1C1D1中,BC1•B1D1=()A.22B.4C.-22D.-4答案:棱长为2的正方体ABCD-A1B1C1D1中,BC1与
B1D1的夹角等于BC1与BD的夹角,等于60°.∴BC1•B1D1=22×22cos60°=4,故选B.37.如图,平面内有三个向量OA、OB、OC,其中与OA与OB的夹角为120°,OA与OC的夹角为30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),则λ+μ的值为______.答案:过C作OA与OB的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四边形的边长为2和4,λ+μ=2+4=6.故为6.38.函数f(x)=x2+(a+1)x+2是定义在[a,b]上的偶函数,则a+b=______.答案:∵函数f(x)=x2+(a+1)x+2是定义在[a,b]上的偶函数,∴其定义域关于原点对称,既[a,b]关于原点对称.所以a与b互为相反数即a+b=0.故为:0.39.电视机的使用寿命显像管开关的次数有关.某品牌电视机的显像管开关了10000次还能继续使用的概率是0.96,开关了15000次后还能继续使用的概率是0.80,则已经开关了10000次的电视机显像管还能继续使用到15000次的概率是______.答案:记“开关了10000次还能继续使用”为事件A,记“开关了15000次后还能继续使用”为事件B,根据题意,易得P(A)=0.96,P(B)=0.80,则P(A∩B)=0.80,由条件概率的计算方法,可得P=P(A∩B)P(A)=0.800.96=56;故为56.40.在平行四边形ABCD中,AC与BD交于点O,E是线段CD的中点,若AC=a,BD=b,则AE=______.(用a、b表示)答案:∵平行四边形ABCD中,AC与BD交于点O,E是线段CD的中点,若AC=a,BD=b,∴AE=AO+OE=12a+OD+OC2=12a+a+b4=3a4+14b.故为:34a+14b.41.在我市新一轮农村电网改造升级过程中,需要选一个电阻调试某村某设备的线路,但调试者手中必有阻值分别为0.5KΩ,1KΩ,1.3KΩ,2KΩ,3KΩ,5KΩ,5.5KΩ等七种阻值不等的定值电阻,他用分数法进行优选试验时,依次将电阻从小到大安排序号,如果第1个试点与第2个试点比较,第1个试点是一个好点,则第3个试点值的阻值为[
]A、1KΩ
B、1.3KΩ
C、5KΩ
D、1KΩ或5KΩ答案:C42.下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真答案:A、逆命题与逆否命题之间不存在必然的真假关系,故A错误;B、由不等式的性质可知,“a>b”与“a+c>b+c”等价,故B错误;C、“a2+b2=0,则a,b全为0”的逆否命题是“若a,b不全为0,则a2+b2≠0”,故C错误;D、否命题和逆命题是互为逆否命题,有着一致的真假性,故D正确;故选D43.若点A(1,2,3),B(-3,2,7),且AC+BC=0,则点C的坐标为______.答案:设C(x,y,z),则AC+BC=(2x+2,2y-4,2z-10)=0,∴x=-1,y=2,z=5.故为(-1,2,5)44.在平行四边形ABCD中,对角线AC与BD交于点O,AB+AD=λAO,则λ=______.答案:∵四边形ABCD为平行四边形,对角线AC与BD交于点O,∴AB+AD=AC,又O为AC的中点,∴AC=2AO,∴AB+AD=2AO,∵AB+AD=λAO,∴λ=2.故为:2.45.已知均为单位向量,且=,则,的夹角为()
A.
B.
C.
D.答案:C46.在对两个变量x,y进行线性回归分析时,有下列步骤:
①对所求出的回归直线方程作出解释;
②收集数据(xi,yi),i=1,2,…,n;
③求线性回归方程;
④求相关系数;
⑤根据所搜集的数据绘制散点图.
如果根据可形性要求能够作出变量x,y具有线性相关结论,则在下列操作顺序中正确的是()
A.①②⑤③④
B.③②④⑤①
C.②④③①⑤
D.②⑤④③①答案:D47.点P(1,2,2)到原点的距离是()
A.9
B.3
C.1
D.5答案:B48.在空间四边形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根据向量的加法、减法法则,得OA+AB-CB=OB-CB=OB+BC=OC.故选C.49.三直线ax+2y+8=0,4x+3y=10,2x-y=10相交于一点,则a的值是(
)
A.-2
B.-1
C.0
D.1答案:B50.如果抛物线y2=a(x+1)的准线方程是x=-3,那么这条抛物线的焦点坐标是()A.(3,0)B.(2,0)C.(1,0)D.(-1,0)答案:抛物线y2=a(x+1)可由抛物线y2=ax向左平移一个单位长度得到,因为抛物线y2=a(x+1)的准线方程是x=-3,所以抛物线y2=ax的准线方程是x=-2,且焦点坐标为(2,0),那么抛物线y2=a(x+1)的焦点坐标为(1,0).故选C.第2卷一.综合题(共50题)1.某教师出了一份三道题的测试卷,每道题1分,全班得3分、2分、1分和0分的学生所占比例分别为30%、50%、10%和10%,则全班学生的平均分为______分.答案:∵全班得3分、2分、1分和0分的学生所占比例分别为30%、50%、10%和10%,∴全班的平均分是3×30%+2×50%+1×10%+0×10%=2,故为:22.已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1.
(Ⅰ)当直线BD过点(0,1)时,求直线AC的方程;
(Ⅱ)当∠ABC=60°时,求菱形ABCD面积的最大值.答案:(Ⅰ)由题意得直线BD的方程为y=x+1.因为四边形ABCD为菱形,所以AC⊥BD.于是可设直线AC的方程为y=-x+n.由x2+3y2=4y=-x+n得4x2-6nx+3n2-4=0.因为A,C在椭圆上,所以△=-12n2+64>0,解得-433<n<433.设A,C两点坐标分别为(x1,y1),(x2,y2),则x1+x2=3n2,x1x2=3n2-44,y1=-x1+n,y2=-x2+n.所以y1+y2=n2.所以AC的中点坐标为(3n4,n4).由四边形ABCD为菱形可知,点(3n4,n4)在直线y=x+1上,所以n4=3n4+1,解得n=-2.所以直线AC的方程为y=-x-2,即x+y+2=0.(Ⅱ)因为四边形ABCD为菱形,且∠ABC=60°,所以|AB|=|BC|=|CA|.所以菱形ABCD的面积S=32|AC|2.由(Ⅰ)可得|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,所以S=34(-3n2+16)(-433<n<433).所以当n=0时,菱形ABCD的面积取得最大值43.3.在研究打酣与患心脏病之间的关系中,通过收集数据、整理分析数据得“打酣与患心脏病有关”的结论,并且有99%以上的把握认为这个结论是成立的.下列说法中正确的是()
A.100个心脏病患者中至少有99人打酣
B.1个人患心脏病,则这个人有99%的概率打酣
C.100个心脏病患者中一定有打酣的人
D.100个心脏病患者中可能一个打酣的人都没有答案:D4.判断下列结出的输入语句、输出语句和赋值语句是否正确?为什么?
(1)输出语句INPUT
a;b;c
(2)输入语句INPUT
x=3
(3)输出语句PRINT
A=4
(4)输出语句PRINT
20.3*2
(5)赋值语句3=B
(6)赋值语句
x+y=0
(7)赋值语句A=B=2
(8)赋值语句
T=T*T.答案:(1)输入语句
INPUT
a;b;c中,变量名之间应该用“,”分隔,而不能用“;”分隔,故(1)错误;(2)输入语句INPUT
x=3中,命令动词INPUT后面应写成“x=“,3,故(2)错误;(3)输出语句PRINT
A=4中,命令动词PRINT后面应写成“A=“,4,故(3)错误;(4)输出语句PRINT
20.3*2符合规则,正确;(5)赋值语句
3=B中,赋值号左边必须为变量名,故(5)错误;(6)赋值语句
x+y=0中,赋值号左边不能是表达式,故(6)错误;(7)赋值语句
A=B=2中.赋值语句不能连续赋值,故(7)错误;(8)赋值语句
T=T*T是,符合规则,正确;故正确的有(4)、(8)错误的是(1)、(2)、(3)、(5)、(6)、(7).5.管理人员从一池塘中捞出30条鱼做上标记,然后放回池塘,将带标记的鱼完全混合于鱼群中.10天后,再捕上50条,发现其中带标记的鱼有2条.根据以上收据可以估计该池塘有______条鱼.答案:设该池塘中有x条鱼,由题设条件建立方程:30x=250,解得x=750.故为:750.6.抛物线y=14x2的焦点坐标是______.答案:抛物线y=14x2
即x2=4y,∴p=2,p2=1,故焦点坐标是(0,1),故为(0,1).7.直线x=2-12ty=-1+12t(t为参数)被圆x2+y2=4截得的弦长为______.答案:∵直线x=2-12ty=-1+12t(t为参数)∴直线的普通方程为x+y-1=0圆心到直线的距离为d=12=22,l=24-(22)2=14,故为:14.8.抛物线y2=4x的焦点坐标是()
A.(4,0)
B.(2,0)
C.(1,0)
D.答案:C9.在命题“若a>b,则ac2>bc2”及它的逆命题、否命题、逆否命题之中,其中真命题有()A.4个B.3个C.2个D.1个答案:命题“若a>b,则ac2>bc2”为假命题;其逆命题为“若ac2>bc2,则a>b”为真命题;其否命题为“若a≤b,则ac2≤bc2”为真命题;其逆否命题为“若ac2≤bc2,则a≤b”为假命题;故选C10.已知{x1,x2,x3,…,xn}的平均数是2,则3x1+2,3x2+2,…,3xn+2的平均数=_______.答案:∵x1,x2,x3,…,xn的平均数是2即(x1+x2+x3+…+xn)÷n=2∴3x1+2,3x2+2,…,3xn+2的平均数为(3x1+2+3x2+2+…+3xn+2)÷n=[3(x1+x2+x3+…+xn)+2n]÷n=3×2+2=8故为:811.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|x-5|+|x+3|≥10的解集是______.
B.(坐标系与参数方程选做题)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是______.
C.(几何证明选做题)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=22,BE=1,BF=2,若CE与圆相切,则线段CE的长为______.答案:A.∵|x-5|+|x+3|≥10,∴当x≥5时,x-5+x+3≥10,∴x≥6;当x≤-3时,有5-x+(-x-3)≥10,∴x≤-4;当-4<x<5时,有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴该圆的圆心的直角坐标为(-1,0),∴其极坐标是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依题意,由相交线定理得:AF•FB=DF•FC,∴AF×2=22×22,∴AF=4;又∵CE与圆相切,∴|CE|2=|EB|•|EA|=1×(1+2+4)=7,∴|CE|=7.故为:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.12.在(x+2y)n的展开式中第六项与第七项的系数相等,求展开式中二项式系数最大的项.答案:∵在(x+2y)n的展开式中第六项与第七项的系数相等,∴Cn525=Cn626,∴n=8,∴二项式共有9项,最中间一项的系数最大即展开式中二项式系数最大的项是第5项.13.下列命题中正确的是()
A.若,则
B.若,则
.若,则
D.若,则答案:C14.某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为()A.12B.16C.24D.32答案:将空位插到三个人中间,三个人有两个中间位置和两个两边位置就是将空位分为四部分,五个空位四分只有1,1,1,2空位五差别,只需要空位2分别占在四个位置就可以有四种方法,另外三个人排列A33=6根据分步计数可得共有4×6=24故选C.15.已知函数y=f(n),满足f(1)=2,且f(n+1)=3f(n),n∈N+,则
f(3)的值为______.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故为18.16.从一堆苹果中任取5只,称得它们的质量为(单位:克):125124121123127,则该样本标准差s=______(克)(用数字作答).答案:由题意得:样本平均数x=15(125+124+121+123+127)=124,样本方差s2=15(12+02+32+12+32)=4,∴s=2.故为2.17.如图,在半径为7的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为______.答案:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP•1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半径为7,则圆心O到弦CD的距离为d=r2-(CD2)2=7-(52)2=32.故为:32.18.(文)将图所示的一个直角三角形ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体的正视图是下面四个图形中的(
)
A.
B.
C.
D.
答案:B19.(参数方程与极坐标选讲)在极坐标系中,圆C的极坐标方程为:ρ2+2ρcosθ=0,点P的极坐标为(2,π2),过点P作圆C的切线,则两条切线夹角的正切值是______.答案:圆C的极坐标方程ρ2+2ρcosθ=0,化为普通方程为x2+y2+2x=0,即(x-1)2+y2=1.它表示以C(1,0)为圆心,以1为半径的圆.点P的极坐标为(2,π2),化为直角坐标为(0,2).设两条切线夹角为2θ,则sinθ=15,cosθ25,故tanθ=12.再由tan2θ=2tanθ1-tan2θ=43,故为43.20.已知向量,满足:||=3,||=5,且=λ,则实数λ=()
A.
B.
C.±
D.±答案:C21.如图所示,圆的内接△ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段BE=()
A.
B.
C.
D.4
答案:B22.某学校为了了解学生的日平均睡眠时间(单位:h),随机选择了n名同学进行调查,下表是这n名同学的日平均睡眠时间的频率分布表:
序号(i)分组(睡眠时间)频数(人数)频率1[4,5)40.082[5,6)x0.203[6,7)ay4[7,8)bz5[8,9]m0.O8(1)求n的值;若a=20,试确定x、y、z、m的值;
(2)统计方法中,同一组数据常用该组区间的中点值(例如[4,5)的中点值4.5)作为代表.若据此计算的这n名学生的日平均睡眠时间的平均值为6.68.求a、b的值.答案:(1)样本容量n=40.08=50,∴x=0.20×50=10,y=0.4,z=0.24,m=4(5分)(2)n=50,P(i=3)=a50,P(i=4)=b50平均时间为:4.5×0.08+5.5×0.2+6.5×a50+7.5×b50+8.5×0.08=6.68,即13a+15b=454
①(9分)又4+10+a+b+4=50,即a+b=32
②由①,②解得:a=13,b=1.(12分)23.已知正三角形的外接圆半径为63cm,求它的边长.答案:设正三角形的边长为a,则12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的边长为18cm.24.已知函数f(x)=x21+x2.
(1)求f(2)与f(12),f(3)与f(13);
(2)由(1)中求得结果,你能发现f(x)与f(1x)有什么关系?并证明你的结论;
(3)求f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)的值.答案:(1)f(2)=45,f(12)=15…1分f(3)=910,f(13)=110…2分(2)f(x)+f(1x)=1…5分证:f(x)+f(1x)=x21+x2+(1x)21+(1x)2=x21+x2+11+x2=1…8分(3)f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)=f(1)+[f(2)+f(12)]+[f(3)+f(13)]+…+[f(2013)+f(12013)]=12+2012=40252…12分25.已知某离散型随机变量ξ的数学期望Eξ=76,ξ的分布列如下,则a=______.
答案:∵Eξ=76=0×a+1×13+2×16+3b∴b=16,∵P(ξ=0)+P(ξ=1)+P(ξ=2)+P(ξ=3)=1∴a+13+16+16=1∴a=13.故为:1326.已知点E在△ABC所在的平面且满足AB+AC=λAE(λ≠0),则点E一定落在()A.BC边的垂直平分线上B.BC边的中线所在的直线上C.BC边的高线所在的直线上D.BC边所在的直线上答案:因为点E在△ABC所在的平面且满足AB+AC=λAE(λ≠0)所以,根据平行四边形法则,E一定落在这个平行四边形的起点为A的对角线上,又平行四边形对角线互相平分,所以E一定落在BC边的中线所在的直线上,故选B.27.在z轴上与点A(-4,1,7)和点B(3,5,-2)等距离的点C的坐标为
______.答案:由题意设C(0,0,z),∵C与点A(-4,1,7)和点B(3,5,-2)等距离,∴|AC|=|BC|,∴16+1+(7-z)2=9+25+(z+2)2,∴18z=28,∴z=149,∴C点的坐标是(0,0,149)故为:(0,0,149)28.如图,在等腰△ABC中,AC=AB,以AB为直径的⊙O交BC于点E,过点E作⊙O的切线交AC于点D,交AB的延长线于点P.问:PD与AC是否互相垂直?请说明理由.答案:PD与AC互相垂直.理由如下:连接OE,则OE⊥PD;∵AC=AB,OE=OB,∴∠OEB=∠B=∠C,∴OE∥AC,∴PD与AC互相垂直.29.已知0<a<2,复数z的实部为a,虚部为1,则|z|的取值范围是()A.(1,5)B.(1,3)C.(1,5)D.(1,3)答案:|z|=a2+1,而0<a<2,∴1<|z|<5,故选C.30.已知直线l的斜率为k=-1,经过点M0(2,-1),点M在直线上,以M0M的数量t为参数,则直线l的参数方程为______.答案:∵直线l经过点M0(2,-1),斜率为k=-1,倾斜角为3π4,∴直线l的参数方程为x=2+tcos3π4y=-1+tsin3π4
(t为参数);即为x=2-22ty=-1+22t(t为参数).故为:x=2-22ty=-1+22t(t为参数).31.在画两个变量的散点图时,下面哪个叙述是正确的()
A.预报变量x轴上,解释变量y轴上
B.解释变量x轴上,预报变量y轴上
C.可以选择两个变量中任意一个变量x轴上
D.可以选择两个变量中任意一个变量y轴上答案:B32.以下程序输入2,3,4运行后,输出的结果是()
INPUT
a,b,c
a=b
b=c
c=a
a,b,c.
A.234
B.324
C.343
D.342答案:C33.球的表面积与它的内接正方体的表面积之比是()A.π3B.π4C.π2D.π答案:设:正方体边长设为:a则:球的半径为3a2所以球的表面积S1=4?π?R2=4π34a2=3πa2而正方体表面积为:S2=6a2所以比值为:S1S2=π2故选C34.以过椭圆+=1(a>b>0)的右焦点的弦为直径的圆与其右准线的位置关系是()
A.相交
B.相切
C.相离
D.不能确定答案:C35.点M的直角坐标为(,1,-2),则它的柱坐标为()
A.(2,,2)
B.(2,,2)
C.(2,,-2)
D.(2,-,-2)答案:C36.已知l∥α,且l的方向向量为(2,-8,1),平面α的法向量为(1,y,2),则y=______.答案:∵l∥α,∴l的方向向量(2,-8,1)与平面α的法向量(1,y,2)垂直,∴2×1-8×y+2=0,解得y=12.故为12.37.已知集合A到B的映射f:x→y=2x+1,那么集合A中元素2在B中的象是()A.2B.5C.6D.8答案:∵x=2,∴y=2x+1则y=2×2+1=5,那么集合A中元素2在B中的象是5故选B.38.已知椭圆的中心在原点,对称轴为坐标轴,焦点在x轴上,短轴的一个顶点B与两个焦点F1,F2组成的三角形的周长为4+23,且∠F1BF2=2π3,求椭圆的标准方程.答案::设长轴长为2a,焦距为2c,则在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周长为2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求椭圆的标准方程为x24+y2=1.39.下图是由哪个平面图形旋转得到的(
)答案:A40.已知两个非空集合A、B满足A∪B={1,2,3},则符合条件的有序集合对(A,B)个数是()A.6B.8C.25D.27答案:按集合A分类讨论若A={1,2,3},则B是A的子集即可满足题意,故B有7种情况,即有序集合对(A,B)个数为7若A={1,2,}或{1,3}或{2,3}时,集合B中至少有一个元素,故每种情况下,B都有4种情况,故有序集合对(A,B)个数为4×3=12若A={1}或{3}或{2}时集合中至少有二个元素,故每种情况下,B都有2种情况,故有序集合对(A,B)个数为2×3=6综上,符合条件的有序集合对(A,B)个数是7+12+6=25故选C41.(不等式选讲选做题)
已知实数a、b、x、y满足a2+b2=1,x2+y2=3,则ax+by的最大值为______.答案:因为a2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且仅当ay=bx时取等号,所以ax+by的最大值为3.故为:3.42.对总数为N的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为0.25,则N等于()A.150B.200C.120D.100答案:∵每个零件被抽取的概率都相等,∴30N=0.25,∴N=120.故选C.43.集合{1,2,3}的真子集总共有()A.8个B.7个C.6个D.5个答案:集合{1,2,3}的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7个.故选B.44.意大利数学家菲波拉契,在1202年出版的一书里提出了这样的一个问题:一对兔子饲养到第二个月进入成年,第三个月生一对小兔,以后每个月生一对小兔,所生小兔能全部存活并且也是第二个月成年,第三个月生一对小兔,以后每月生一对小兔.问这样下去到年底应有多少对兔子?试画出解决此问题的程序框图,并编写相应的程序.答案:见解析解析:解:根据题意可知,第一个月有对小兔,第二个月有对成年兔子,第三个月有两对兔子,从第三个月开始,每个月的兔子对数是前面两个月兔子对数的和,设第个月有对兔子,第个月有对兔子,第个月有对兔子,则有,一个月后,即第个月时,式中变量的新值应变第个月兔子的对数(的旧值),变量的新值应变为第个月兔子的对数(的旧值),这样,用求出变量的新值就是个月兔子的数,依此类推,可以得到一个数序列,数序列的第项就是年底应有兔子对数,我们可以先确定前两个月的兔子对数均为,以此为基准,构造一个循环程序,让表示“第×个月的从逐次增加,一直变化到,最后一次循环得到的就是所求结果.流程图和程序如下:S=1Q=1I=3WHILE
I<=12F=S+QQ=SS=FI=I+1WENDPRINT
FEND45.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},则集合A∩B中的元素个数为(
)
A.0个
B.1个
C.2个
D.无穷多个答案:C46.已知按向量平移得到,则
.答案:3解析:由平移公式可得解得.47.若a2+b2=4,则两圆(x-a)2+y2=1和x2+(y-b)2=1的位置关系是______.答案:若a2+b2=4,由于两圆(x-a)2+y2=1和x2+(y-b)2=1的圆心距为(a-0)2+(0-b)2=a2+b2=2,正好等于两圆的半径之和,故两圆相外切,故为相外切.48.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的一个焦点是F2(2,0),且b=3a.
(1)求双曲线C的方程;
(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交于A,B不同的两点时,求实数m的取值范围;并证明AB中点M在曲线3(x-1)2-y2=3上.
(3)设(2)中直线l与双曲线C的右支相交于A,B两点,问是否存在实数m,使得∠AOB为锐角?若存在,请求出m的范围;若不存在,请说明理由.答案:(1)c=2c2=a2+b2∴4=a2+3a2∴a2=1,b2=3,∴双曲线为x2-y23=1.(2)l:m(x-2)+y=0由y=-mx+2mx2-y23=1得(3-m2)x2+4m2x-4m2-3=0由△>0得4m4+(3-m2)(4m2+3)>012m2+9-3m2>0即m2+1>0恒成立又x1+x2>0x1•x2>04m2m2-3>04m2+3m2-3>0∴m2>3∴m∈(-∞,-3)∪(3,+∞)设A(x1,y1),B(x2,y2),则x1+x22=2m2m2-3y1+y22=-2m3m2-3+2m=-6mm2-3∴AB中点M(2m2m2-3,-6mm2-3)∵3(2m2m2-3-1)2-36m2(m2-3)2=3×(m2+3)2(m2-3)2-36m2(m2-3)2=3•m4+6m2+9-12m2(m2-3)2=3∴M在曲线3(x-1)2-y2=3上.(3)A(x1,y1),B(x2,y2),设存在实数m,使∠AOB为锐角,则OA•OB>0∴x1x2+y1y2>0因为y1y2=(-mx1+2m)(-mx2+2m)=m2x1x2-2m2(x1+x2)+4m2∴(1+m2)x1x2-2m2(x1+x2)+4m2>0∴(1+m2)(4m2+3)-8m4+4m2(m2-3)>0即7m2+3-12m2>0∴m2<35,与m2>3矛盾∴不存在49.若函数y=f(x)的定义域是[12,2],则函数y=f(log2x)的定义域为______.答案:由题意知12≤log2x≤2,即log22≤log2x≤log24,∴2≤x≤4.故为:[2,4].50.如图,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=______.答案:如图,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则根据椭圆的对称性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余两对的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故为35.第3卷一.综合题(共50题)1.过点(-1,3)且垂直于直线x-2y+3=0的直线方程为(
)
A.2x+y-1=0
B.2x+y-5=0
C.x+2y-5=0
D.x-2y+7=0答案:A2.如图,F1,F2分别为椭圆x2a2+y2b2=1的左、右焦点,点P在椭圆上,△POF2是面积为3的正三角形,则b2的值是______.答案:∵△POF2是面积为3的正三角形,∴S=34|PF2|2=3,|PF2|=2.∴c=2,∵△PF1F2为直角三角形,∴a=3+1,故为23.3.已知△ABC∽△DEF,且相似比为3:4,S△ABC=2cm2,则S△DEF=______cm2.答案:∵△ABC∽△DEF,且相似比为3:4∴S△ABC:S△DEF=9:16∴S△DEF=329.故为:329.4.判断下列结出的输入语句、输出语句和赋值语句是否正确?为什么?
(1)输出语句INPUT
a;b;c
(2)输入语句INPUT
x=3
(3)输出语句PRINT
A=4
(4)输出语句PRINT
20.3*2
(5)赋值语句3=B
(6)赋值语句
x+y=0
(7)赋值语句A=B=2
(8)赋值语句
T=T*T.答案:(1)输入语句
INPUT
a;b;c中,变量名之间应该用“,”分隔,而不能用“;”分隔,故(1)错误;(2)输入语句INPUT
x=3中,命令动词INPUT后面应写成“x=“,3,故(2)错误;(3)输出语句PRINT
A=4中,命令动词PRINT后面应写成“A=“,4,故(3)错误;(4)输出语句PRINT
20.3*2符合规则,正确;(5)赋值语句
3=B中,赋值号左边必须为变量名,故(5)错误;(6)赋值语句
x+y=0中,赋值号左边不能是表达式,故(6)错误;(7)赋值语句
A=B=2中.赋值语句不能连续赋值,故(7)错误;(8)赋值语句
T=T*T是,符合规则,正确;故正确的有(4)、(8)错误的是(1)、(2)、(3)、(5)、(6)、(7).5.将直线y=x绕原点逆时针旋转60°,所得直线的方程为()
A.y=-x
B.
C.y=-3x
D.答案:A6.椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为______.答案:方程x2+my2=1变为x2+y21m=1∵焦点在y轴上,长轴长是短轴长的两倍,∴1m=2,解得m=14故应填147.叙述并证明勾股定理.答案:证明:如图左边的正方形是由1个边长为a的正方形和1个边长为b的正方形以及4个直角边分别为a、b,斜边为c的直角三角形拼成的.右边的正方形是由1个边长为c的正方形和4个直角边分别为a、b,斜边为c的直角三角形拼成的.因为这两个正方形的面积相等(边长都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化简得a2+b2=c2.下面是一个错误证法:勾股定理:直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理证明:作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一个矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可证Rt△QNF≌Rt△AEF.即a2+b2=c28.已知函数f(x)=ax,(a>0,a≠1)的图象经过点P(12,12),则常数a的值为()A.2B.4C.12D.14答案:∵函数f(x)=ax,(a>0,a≠1)的图象经过点P(12,12),∴a12=12,?a=14.故选D.9.若命题“p∧q”为假,且“¬p”为假,则()A.p或q为假B.q假C.q真D.不能判断q的真假答案:因为“?p”为假,所以p为真;又因为“p∧q”为假,所以q为假.对于A,p或q为真,对于C,D,显然错,故选B.10.已知空间四点A(4,1,3),B(2,3,1),C(3,7,-5),D(x,-1,3)共面,则x的值为[
]A
.4
B.1
C.10
D.11答案:D11.如图:在长方体ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F分别是线段AB,BC上的点,且EB=FB=1.
(1)求二面角C-DE-C1的大小;
(2)求异面直线EC1与FD1所成角的大小;
(3)求异面直线EC1与FD1之间的距离.答案:(1)以A为原点AB,AD,AA1分别为x轴、y轴、z轴的正向建立空间直角坐标系,则有D(0,3,0),D1(0,3,2),E(3,0,0),F(4,1,0),C1(4,3,2).(1分)于是DE=(3,-3,0),EC1=(1,3,2),FD1=(-4,2,2)(3分)设向量n=(x,y,z)与平面C1DE垂直,则有n⊥DEn⊥EC1⇒3x-3y=0x+3y+2z=0⇒x=y=-12z.∴n=(-z2,-z2,z)=z2(-1,-1,2),其中z>0.取n0=(-1,-1,2),则n0是一个与平面C1DE垂直的向量,(5分)∵向量AA1=(0,0,2)与平面CDE垂直,∴n0与AA1所成的角θ为二面角C-DE-C1的平面角.(6分)∴cosθ=n0•AA1|n0||AA1|=-1×0-1×0+2×21+1+4×0+0+4=63.(7分)故二面角C-DE-C1的大小为arccos63.(8分)(2)设EC1与FD1所成角为β,(1分)则cosβ=EC1•FD1|EC1||FD1|=1×(-4)+3×2+2×21+1+4×0+0+4=2114(10分)故异面直线EC1与FD1所成角的大小为arccos2114(11分)(3)设m=(x,y,z)m⊥EC1m⊥FD1⇒m=(17,-57,1)又取D1C1=(4,0,0)$}}\overm}=(\frac{1}{7},-\frac{5}{7},1)$$}}\overC}_1}=(4,0,0)$(13分)设所求距离为d,则d=|m⋅D1C1||m|=4315$}}\overC}}_1}|}}{|\vecm|}=\frac{{4\sqrt{3}}}{15}$(14分).12.函数y=2x的值域为______.答案:因为:x≥0,所以:y=2x≥20=1.∴函数y=2x的值域为:[1,+∞).故为:[1,+∞).13.下列函数中,与函数y=1x有相同定义域的是()A.f(x)=log2xB.f(x)=1xC.f(x)=|x|D.f(x)=2x答案:∵函数y=1x定义域为x>0,又函数f(x)=log2x定义域x>0,故选A.14.从甲、乙、丙、丁四人中任选两名代表,甲被选中的概率为
______.答案:由题意:甲、乙、丙、丁四人中任选两名代表,共有六种情况:甲和乙、甲和丙、甲和丁、乙和丙、乙和丁、丙和丁,因每种情况出现的可能性相等,所以甲被选中的概率为12.故为:12.15.已知A、B、C三点不共线,O是平面ABC外的任一点,下列条件中能确定点M与点A、B、C一定共面的是()A.OM=OA+OB+OCB.OM=2OA-OB-OCC.OM=OA+12OB+13OCD.OM=13OA+13OB+13OC答案:由共面向量定理OM=m•OA+n•OB+p•OC,m+n+p=1,说明M、A、B、C共面,可以判断A、B、C都是错误的,则D正确.故选D.16.下列语句不属于基本算法语句的是()
A.赋值语句
B.运算语句
C.条件语句
D.循环语句答案:B17.若a2+b2=c2,求证:a,b,c不可能都是奇数.答案:证明:假设a,b,c都是奇数,则a2,b2,c2都是奇数,得a2+b2为偶数,而c2为奇数,即a2+b2≠c2,这与a2+b2=c2相矛盾,所以假设不成立,故原命题成立.18.根据如图所示的伪代码,可知输出的结果a为______.答案:由题设循环体要执行3次,图知第一次循环结束后c=a+b=2,a=1.b=2,第二次循环结束后c=a+b=3,a=2.b=3,第三次循环结束后c=a+b=5,a=3.b=5,第四次循环结束后不满足循环的条件是b<4,程序输出的结果为3故为:3.19.设a=lg2+lg5,b=ex(x<0),则a与b的大小关系是?答案:a═lg2+lg5=lg10=1又b=ex,由指数函数的性质知,当x<0时,0<b<1∴a>b20.将函数y=sin(x+)的图象按向量=(-m,0)平移所得的图象关于y轴对称,则m最小正值是
(
)
A.
B.
C.
D.答案:A21.在7块并排、形状大小相同的试验田上进行施化肥量对水稻产量影响的试验,得到如下表所示的一组数据(单位:kg).
(1)画出散点图;
(2)求y关于x的线性回归方程;
(3)若施化肥量为38kg,其他情况不变,请预测水稻的产量.答案:(1)根据题表中数据可得散点图如下:(2)∵.x=15+20+25+30+35+40+457=30,.y=330+345+365+405+445+450+4557=399.3∴利用最小二乘法得到b=4.75,a=257∴根据回归直线方程系数的公式计算可得回归直线方程是?y=4.75x+257.(3)把x=38代入回归直线方程得y=438,可以预测,施化肥量为38kg,其他情况不变时,水稻的产量是438kg.22.读下面的程序:
上面的程序在执行时如果输入6,那么输出的结果为()
A.6
B.720
C.120
D.1答案:B23.定义平面向量之间的一种运算“⊙”如下:对任意的=(m,n),=(p,q)
,令⊙=mq-np,下面说法错误的序号是()
①若若a与共线,则⊙=0
②⊙=⊙a
③对任意的λ∈R,有(λ)⊙=λ(⊙)
④(⊙)2+(a)2=||2||2
A.②
B.①②
C.②④
D.③④答案:A24.函数y=(12)x的值域为______.答案:因为函数y=(12)x是指数函数,所以它的值域是(0,+∞).故为:(0,+∞).25.已知a,b,c是空间的一个基底,且实数x,y,z使xa+yb+zc=0,则x2+y2+z2=______.答案:∵a,b,c是空间的一个基底∴a,b,c两两不共线∵xa+yb+zc=0∴x=y=z=0∴x2+y2+z2=0故为:026.已知向量,满足:||=3,||=5,且=λ,则实数λ=()
A.
B.
C.±
D.±答案:C27.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为4的等腰三角形,左视图是一个底边长为6、高为4的等腰三角形.则该几何体的体积为______.答案:由题意几何体复原是一个底面边长为8,6的距离,高为4,且顶点在底面的射影是底面矩形的中心的四棱锥.底面矩形的面积是48所以几何体的体积是:13×46×4=64故为:64.28.某市为抽查控制汽车尾气排放的执行情况,选择了抽取汽车车牌号的末位数字是6的汽车进行检查,这样的抽样方式是(
)
A.抽签法
B.简单随机抽样
C.分层抽样
D.系统抽样答案:D29.证明:已知a与b均为有理数,且a和b都是无理数,证明a+b也是无理数.答案:证明:假设a+b是有理数,则(a+b)(a-b)=a-b由a>0,b>0则a+b>0即a+b≠0∴a-b=a-ba+b∵a,bÎQ且a+b∈Q∴a-ba+b∈Q即(a-b)∈Q这样(a+b)+(a-b)=2a∈Q从而aÎQ(矛盾)∴a+b是无理数30.将5位志愿者分成4组,其中一组为2人,其余各组各1人,到4个路口协助交警执勤,则不同的分配方案有______种(用数字作答).答案:由题意,先分组,再到4个路口协助交警执勤,则不同的分配方案有C25A44=240种故为:240.31.根据给出的程序语言,画出程序框图,并计算程序运行后的结果.
答案:程序框图:模拟程序运行:当j=1时,n=1,当j=2时,n=1,当j=3时,n=1,当j=4时,n=2,…当j=8时,n=2,…当j=11时,n=2,当j=12时,此时不满足循环条件,退出循环程序运行后的结果是:2.32.若向量、、满足++=,=3,=1,=4,则等于(
)
A.-11
B.-12
C.-13
D.-14答案:C33.与
向量
=(2,-1,2)共线且满足方程=-18的向量为()
A.不存在
B.-2
C.(-4,2,-4)
D.(4,-2,4)答案:D34.双曲线的中心是原点O,它的虚轴长为26,右焦点为F(c,0)(c>0),直线l:x=a2c与x轴交于点A,且|OF|=3|OA|.过点F的直线与双曲线交于P、Q两点.
(Ⅰ)求双曲线的方程;
(Ⅱ)若AP•AQ=0,求直线PQ的方程.答案:解.(Ⅰ)由题意,设曲线的方程为x2a2-y2b2=1(a>0,b>0)由已知a2+6=c2c=3a2c解得a=3,c=3所以双曲线的方程:x23-y26=1.(Ⅱ)由(Ⅰ)知A(1,0),F(3,0),当直线PQ与x轴垂直时,PQ方程为x=3.此时,AP•AQ≠0,应舍去.当直线PQ与x轴不垂直时,设直线PQ的方程为y=k(x-3).由方程组x23-y26=1y=k(x-3)得(k2-2)x2-6k2x+9k2+6=0由于过点F的直线与双曲线交于P、Q两点,则k2-2≠0,即k≠±2,由于△=36k4-4(k2-2)(9k2+6)=48(k2+1)>0得k∈R.∴k∈R且k≠±2(*)设P(x1,y1),Q(x2,y2),则x1+x2=6k2k2-2(1)x1x2=9k2+6k2-2(2)由直线PQ的方程得y1=k(x1-3),y2=k(x2-3)于是y1y2=k2(x1-3)(x2-3)=k2[x1x2-3(x1+x2)+9](3)∵AP•AQ=0,∴(x1-1,y1)•(x2-1,y2)=0即x1x2-(x1+x2)+1+y1y2=0(4)由(1)、(2)、(3)、(4)得9k2+6k2-2-6k2k2-2+1+k2(9k2+6k2-2-36k2k2-2+9)=0整理得k2=12,∴k=±22满足(*)∴直线PQ的方程为x-2y-3=0或x+2y-3=035.已知两个力F1,F2的夹角为90°,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 道路用划线机市场需求与消费特点分析
- 2024年度体育场馆广告位租赁合同
- 自行车座套市场需求与消费特点分析
- 肥皂碟市场需求与消费特点分析
- 2024年度宁波住宅销售代理合同
- 04版特许经营合同许可范围与经营指导
- 2024年度珠宝首饰定制合同:设计定制与销售
- 04版股权转让合同书模板(04版)
- 2024年度智能交通管理系统采购合同
- 2024年度太阳能热水器安装工程维修合同
- 低钾血症的护理诊断及措施
- 高++中++语文《大卫+科波菲尔(节选)》课件++统编版高中语文选择性必修上册
- 2024年度产品代理合同:某制造商与代理商之间的年度产品代理协议
- 2024年“农业经理人”职业技能大赛考试题库500题(含答案)
- (高清版)TDT 1055-2019 第三次全国国土调查技术规程
- 维护社会稳定规定
- 2024年河北承德热力集团招聘笔试参考题库含答案解析
- 软件测试项目课件04黑盒测试
- DB31-T 540-2022 重点单位消防安全管理要求
- 谈话提纲,中层及职工代表
- 《世界十大名牌》PPT课件.ppt
评论
0/150
提交评论