2023年四川托普信息技术职业学院高职单招(数学)试题库含答案解析_第1页
2023年四川托普信息技术职业学院高职单招(数学)试题库含答案解析_第2页
2023年四川托普信息技术职业学院高职单招(数学)试题库含答案解析_第3页
2023年四川托普信息技术职业学院高职单招(数学)试题库含答案解析_第4页
2023年四川托普信息技术职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年四川托普信息技术职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.不等式的解集是(

A.(-3,2)

B.(2,+∞)

C.(-∞,-3)∪(2,+∞)

D.(-∞,-3)∪(3,+∞)答案:C2.下面的结构图,总经理的直接下属是()

A.总工程师和专家办公室

B.开发部

C.总工程师、专家办公室和开发部

D.总工程师、专家办公室和所有七个部答案:C3.求证:定义在实数集上的单调减函数y=f(x)的图象与x轴至多只有一个公共点.答案:证明:假设函数y=f(x)的图象与x轴有两个交点…(2分)设交点的横坐标分别为x1,x2,且x1<x2.因为函数y=f(x)在实数集上单调递减所以f(x1)>f(x2),…(6分)这与f(x1)=f(x2)=0矛盾.所以假设不成立.

…(12分)故原命题成立.…(14分)4.若函数y=f(x)的定义域是[12,2],则函数y=f(log2x)的定义域为______.答案:由题意知12≤log2x≤2,即log22≤log2x≤log24,∴2≤x≤4.故为:[2,4].5.已知随机变量ξ~N(3,22),若ξ=2η+3,则Dη=()

A.0

B.1

C.2

D.4答案:B6.已知抛物线的顶点在坐标原点,焦点在x轴正半轴,抛物线上一点M(3,m)到焦点的距离为5,求m的值及抛物线方程.答案:∵抛物线顶点在原点,焦点在x轴上,其上一点M(3,m)∴设抛物线方程为y2=2px∵其上一点M(3,m)到焦点的距离为5,∴3+p2=5,可得p=4∴抛物线方程为y2=8x.7.设四边形ABCD中,有且,则这个四边形是()

A.平行四边形

B.矩形

C.等腰梯形

D.菱形答案:C8.用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)时,第一步验证n=1时,左边应取的项是______答案:在等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)中,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,故n=1时,等式左边的项为:1+2+3+4故为:1+2+3+49.(理)某单位有8名员工,其中有5名员工曾经参加过一种或几种技能培训,另外3名员工没有参加过任何技能培训,现要从8名员工中任选3人参加一种新的技能培训;

(I)求恰好选到1名曾经参加过技能培训的员工的概率;

(Ⅱ)这次培训结束后,仍然没有参加过任何技能培训的员工人数X是一个随机变量,求X的分布列和数学期望.答案:(I)由题意知本题是一个等可能事件的概率,∵试验发生包含的事件是从8人中选3个,共有C83=56种结果,满足条件的事件是恰好选到1名曾经参加过技能培训的员工,共有C51C32=15∴恰好选到1名已参加过其他技能培训的员工的概率P=1556(II)随机变量X可能取的值是:0,1,2,3.P(X=0)=156P(X=1)=1556P(X=2)=1528P(X=3)=C35C38=528∴随机变量X的分布列是X0123P15615561528528∴X的数学期望是1×1556+2×

1528+3×528=15810.已知点P的坐标为(3,4,5),试在空间直角坐标系中作出点P.答案:由P(3,4,5)可知点P在Ox轴上的射影为A(3,0,0),在Oy轴上射影为B(0,4,0),以OA,OB为邻边的矩形OACB的顶点C是点P在xOy坐标平面上的射影C(3,4,0).过C作直线垂直于xOy坐标平面,并在此直线的xOy平面上方截取5个单位,得到的就是点P.11.如图所示,正方体的棱长为1,点A是其一棱的中点,则点A在空间直角坐标系中的坐标是()

A.(,,1)

B.(1,1,)

C.(,1,)

D.(1,,1)

答案:B12.P在⊙O外,PC切⊙O于C,PAB交⊙O于A、B,则()

A.∠PCB=∠B

B.∠PAC=∠P

C.∠PCA=∠B

D.∠PAC=∠BCA答案:C13.过点P(2,3)且以a=(1,3)为方向向量的直线l的方程为______.答案:设直线l的另一个方向向量为a=(1,k),其中k是直线的斜率可得a=(1,3)与a=(1,k)互相平行∴11=k3⇒k=3,所以直线l的点斜式方程为:y-3=3(x-2)化成一般式:3x-y-3=0故为:3x-y-3=0.14.在直角坐标系中,x=-1+3cosθy=2+3sinθ,θ∈[0,2π],所表示曲线的解析式是:______.答案:由题意并根据cos2θ+sin2θ=1

可得,(x+13)2+(y-23)2=1,即(x+1)2+(y-2)2=9,故为(x+1)2+(y-2)2=9.解析:在直角坐标系中,15.已知圆O:x2+y2=5和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积=______.答案:由题意知,点A在圆上,切线斜率为-1KOA=-121=-12,用点斜式可直接求出切线方程为:y-2=-12(x-1),即x+2y-5=0,从而求出在两坐标轴上的截距分别是5和52,所以,所求面积为12×52×5=254.16.已知中心在原点,对称轴为坐标轴,长半轴长与短半轴长的和为92,离心率为35的椭圆的标准方程为______.答案:由题意可得a+b=92e=ca=35a2=b2+c2,解得a2=50b2=32.∴椭圆的标准方程为x250+y232=1或y250+x232=1.故为x250+y232=1或y250+x232=1.17.为研究变量x和y的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程l1和l2,两人计算知.x相同,.y也相同,下列正确的是()A.l1与l2一定重合B.l1与l2一定平行C.l1与l2相交于点(.x,.y)D.无法判断l1和l2是否相交答案:∵两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,∴两组数据的样本中心点是(.x,.y)∵回归直线经过样本的中心点,∴l1和l2都过(.x,.y).故选C.18.向量a=i+

2j在向量b=3i+4j上的投影是______.答案:根据投影的定义可得:a在b方向上的投影为:|a|cos<a,b>=a?b|b|=1×3+2×452=115.故为:115.19.已知平面内一动点P到F(1,0)的距离比点P到y轴的距离大1.

(1)求动点P的轨迹C的方程;

(2)过点F的直线交轨迹C于A,B两点,交直线x=-1于M点,且MA=λ1AF,MB=λ2BF,求λ1+λ2的值.答案:(1)由题意知动点P到F(1,0)的距离与直线x=-1的距离相等,由抛物线定义知,动点P在以F(1,0)为焦点,以直线x=-1为准线的抛物线上,方程为y2=4x.(2)由题设知直线的斜线存在,设直线AB的方程为:y=k(x-1),设A(x1,y1),B(x2,y2),由y=k(x-1)y2=4x,得k2x2-2(k2+2)x+k2=0,∵x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得k2x2-2(k2+2)x+k2=0,∴x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得λ1=-1-2x2-1,同理λ2=-1-2x2-1,∴λ1+λ2=-2-2(1x1-1+1x2-1)=0.20.书架上有5本数学书,4本物理书,5本化学书,从中任取一本,不同的取法有()A.14B.25C.100D.40答案:由题意,∵书架上有5本数学书,4本物理书,5本化学书,∴从中任取一本,不同的取法有5+4+5=14种故选A.21.在极坐标系中,圆ρ=-2cosθ的圆心的极坐标是()

A.(1,)

B.(1,-)

C.(1,0)

D.(1,π)答案:D22.设随机变量X~B(10,0.8),则D(2X+1)等于()

A.1.6

B.3.2

C.6.4

D.12.8答案:C23.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米.当水面升高1米后,水面宽度是______米.答案:由题意,建立如图所示的坐标系,抛物线的开口向下,设抛物线的标准方程为x2=-2py(p>0)∵顶点距水面2米时,量得水面宽8米∴点(4,-2)在抛物线上,代入方程得,p=4∴x2=-8y当水面升高1米后,y=-1代入方程得:x=±22∴水面宽度是42米故为:4224.对于数25,规定第1次操作为23+53=133,第2次操作为13+33+33=55,如此反复操作,则第2012次操作后得到的数是

()A.25B.250C.55D.133答案:第1次操作为23+53=133,第2次操作为13+33+33=55,第3次操作为53+53=250,第4次操作为23+53+03=133∴操作结果,以3为周期,循环出现∵2012=3×670+2∴第2012次操作后得到的数与第2次操作后得到的数相同∴第2012次操作后得到的数是55故选C.25.一个口袋内有4个不同的红球,6个不同的白球,

(1)从中任取4个球,红球的个数不比白球少的取法有多少种?

(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?答案:解(1)由题意知本题是一个分类计数问题,将取出4个球分成三类情况取4个红球,没有白球,有C44种取3个红球1个白球,有C43C61种;取2个红球2个白球,有C42C62,∴C44+C43C61+C42C62=115种(2)设取x个红球,y个白球,则x+y=5(0≤x≤4)2x+y≥7(0≤y≤6)∴x=2y=3或x=3y=2或x=4y=1∴符合题意的取法种数有C42C63+C43C62+C44C61=186种26.设a=0.7,b=0.8,c=log30.7,则()

A.c<b<a

B.c<a<b

C.a<b<c

D.b<a<c答案:B27.若f(x)=ax(a>0且a≠1)的反函数g(x)满足:g()<0,则函数f(x)的图象向左平移一个单位后的图象大致是下图中的()

A.

B.

C.

D.

答案:B28.用反证法证明:“a>b”,应假设为()

A.a>b

B.a<b

C.a=b

D.a≤b答案:D29.已知点A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,α∈(0,π),则与的夹角为()

A.

B.

C.

D.答案:D30.命题“当AB=AC时,△ABC是等腰三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题有______个.答案:原命题为真命题.逆命题“当△ABC是等腰三角形时,AB=AC”为假命题.否命题“当AB≠AC时,△ABC不是等腰三角形”为假命题.逆否命题“当△ABC不是等腰三角形时,AB≠AC”为真命题.故为:2.31.设向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,则|a+b|的最大值为

______.答案:|a|=1因为|b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因为0≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故为:232.(文)椭圆的一个焦点与短轴的两端点构成一个正三角形,则该椭圆的离心率为()

A.

B.

C.

D.不确定答案:C33.已知正整数指数函数f(x)的图象经过点(3,27),

(1)求函数f(x)的解析式;

(2)求f(5);

(3)函数f(x)有最值吗?若有,试求出;若无,说明原因.答案:(1)设正整数指数函数为f(x)=ax(a>0,a≠1,x∈N+),因为函数f(x)的图象经过点(3,27),所以f(3)=27,即a3=27,解得a=3,所以函数f(x)的解析式为f(x)=3x(x∈N+).(2)由f(x)=3x(x∈N+),可得f(5)=35=243.(3)∵f(x)的定义域为N+,且在定义域上单调递增,∴f(x)有最小值,最小值是f(1)=3;f(x)无最大值.解析:已知正整数指数函数f(x)的图象经过点(3,27),(1)求函数f(x)的解析式;(2)求f(5);(3)函数f(x)有最值吗?若有,试求出;若无,说明原因.34.(几何证明选讲选做题)如图,⊙O中,直径AB和弦DE互相垂直,C是DE延长线上一点,连接BC与圆0交于F,若∠CFE=α(α∈(0,π2)),则∠DEB______.答案:∵直径AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四点共圆∴∠EFC=∠D=α∴∠DEB=α故为:α35.在极坐标系中,直线l经过圆ρ=2cosθ的圆心且与直线ρcosθ=3平行,则直线l与极轴的交点的极坐标为______.答案:由ρ=2cosθ可知此圆的圆心为(1,0),直线ρcosθ=3是与极轴垂直的直线,所以所求直线的极坐标方程为ρcosθ=1,所以直线l与极轴的交点的极坐标为(1,0).故为:(1,0).36.如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为2,那么

这个几何体的体积为()A.13B.23C.43D.2答案:根据三视图,可知该几何体是三棱锥,右图为该三棱锥的直观图,三棱锥的底面是一个腰长是2的等腰直角三角形,∴底面的面积是12×2×2=2垂直于底面的侧棱长是2,即高为2,∴三棱锥的体积是13×2×2=43故选C.37.两不重合直线l1和l2的方向向量分别为答案:∵直线l1和l2的方向向量分别为38.请写出所给三视图表示的简单组合体由哪些几何体组成.______.答案:由已知中的三视图我们可以判断出该几何体是由一个底面面积相等的圆锥和圆柱组合而成故为:圆柱体,圆锥体39.函数y=ax+b与y=logbx且a>0,在同一坐标系内的图象是()A.

B.

C.

D.

答案:∵a>0,则函数y=ax+b为增函数,与y轴的交点为(0,b)当0<b<1时,函数y=ax+b与y轴的交点在原点和(0,1)点之间,y=logbx为减函数,D图满足要求;当b>1时,函数y=ax+b与y轴的交点在(0,1)点上方,y=logbx为增函数,不存在满足条件的图象;故选D40.从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为()

A.432

B.288

C.216

D.108答案:C41.已知平面向量=(1,-3),=(4,-2),λ+与垂直,则λ是()

A.1

B.2

C.-2

D.-1答案:D42.若a=0.30.2,b=20.4,c=0.30.3,则a,b,c三个数的大小关系是:______(用符号“>”连接这三个字母)答案:∵1=0.30>0.30.2>0.30.3,又∵20.4>20=1,∴b>a>c.故为:b>a>c.43.用反证法证明命题“三角形中最多只有一个内角是钝角”时,则假设的内容是()

A.三角形中有两个内角是钝角

B.三角形中有三个内角是钝角

C.三角形中至少有两个内角是钝角

D.三角形中没有一个内角是钝角答案:C44.当a>0时,设命题P:函数f(x)=x+ax在区间(1,2)上单调递增;命题Q:不等式x2+ax+1>0对任意x∈R都成立.若“P且Q”是真命题,则实数a的取值范围是()A.0<a≤1B.1≤a<2C.0≤a≤2D.0<a<1或a≥2答案:∵函数f(x)=x+ax在区间(1,2)上单调递增;∴f′(x)≥0在区间(1,2)上恒成立,∴1-ax2≥0在区间(1,2)上恒成立,即a≤x2在区间(1,2)上恒成立,∴a≤1.且a>0…①又不等式x2+ax+1>0对任意x∈R都成立,∴△=a2-4<0,∴-2<a<2…②若“P且Q”是真命题,则P且Q都是真命题,故由①②的交集得:0<a≤1,则实数a的取值范围是0<a≤1.故选A.45.设抛物线x2=12y的焦点为F,经过点P(2,1)的直线l与抛物线相交于A、B两点,若点P恰为线段AB的中点,则|AF|+|BF|=______.答案:过点A,B,P分别作抛物线准线y=-3的垂线,垂足为C,D,Q,据抛物线定义,得|AF|+|BF|=|AC|+|BD|=2|PQ|=8.故为846.已知l∥α,且l的方向向量为(2,-8,1),平面α的法向量为(1,y,2),则y=______.答案:∵l∥α,∴l的方向向量(2,-8,1)与平面α的法向量(1,y,2)垂直,∴2×1-8×y+2=0,解得y=12.故为12.47.若双曲线的渐近线方程为y=±34x,则双曲线的离心率为______.答案:由题意可得,当焦点在x轴上时,ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.当焦点在y轴上时,ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故为:53

或54.48.用反证法证明命题“若a、b∈N,ab能被2整除,则a,b中至少有一个能被2整除”,那么反设的内容是______.答案:根据用反证法证明数学命题的步骤,应先假设要证命题的否定成立,而要证命题的否定为:“a,b都不能被2整除”,故为:a、b都不能被2整除.49.已知两条直线y=ax-2和y=(a+2)x+1互相垂直,则a等于(

A.2

B.1

C.0

D.-1答案:D50.已知|a=2,|b|=1,a与b的夹角为60°,求向量.a+2b与2a+b的夹角.答案:由题意得,a?b=2×1×12=1,∴(a+2b)?(2a+b)=2a2+5a?b+2b2=15,|a+2b|=a2+4a?b+4b2=23,|2a+b|=4a2+4a?b+b2=21,设a+2b与2a+b夹角为θ,则cosθ=(a+2b)?(2a+b)|a+2b||2a+b|=1523×21=5714,则θ=arccos5714第2卷一.综合题(共50题)1.为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:

甲273830373531乙332938342836请判断:谁参加这项重大比赛更合适,并阐述理由.答案:.X甲=27+38+30+37+35+316=33S甲=946≈3.958,(

4分).X乙=33+29+38+34+28+366=33S乙=383≈3.559(8分).X甲=.X乙,S甲>S乙

(10分)乙参加更合适

(12分)2.已知随机变量ξ服从正态分布N(1,δ2)(δ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为(

A.

B.

C.

D.答案:D3.设双曲线的渐近线方程为2x±3y=0,则双曲线的离心率为______.答案:∵双曲线的渐近线方程是2x±3y=0,∴知焦点是在x轴时,ba=23,设a=3k,b=2k,则c=13k,∴e=133.焦点在y轴时ba=32,设a=2k,b=3k,则c=13k,∴e=132.故为:133或1324.设圆O1和圆O2是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹不可能是()

A.

B.

C.

D.

答案:A5.函数y=f(x)对任意实数x,y都有f(x+y)=f(x)+f(y)+2xy.

(1)求f(0)的值;

(2)若f(1)=1,求f(2),f(3),f(4)的值,猜想f(n)的表达式并用数学归纳法证明你的结论;

(3)若f(1)≥1,求证:f(12n)>0(n∈N*).答案:(1)令x=y=0得f(0+0)=f(0)+f(0)+2×0×0?f(0)=0(2)f(1)=1,f(2)=f(1+1)=1+1+2=4f(3)=f(2+1)=4+1+2×2×1=9f(4)=f(3+1)=9+1+2×3×1=16猜想f(n)=n2,下用数学归纳法证明之.①当n=1时猜想成立.②假设n=k时猜想成立,即:f(k)=k2,那么f(k+1)=f(k)+f(1)+2k=k2+2k+1=(k+1)2.这就是说n=k+1时猜想也成立.对于一切n≥1,n∈N+猜想都成立.(3)f(1)≥1,则f(1)=2f(12)+2×12×12≥1?f(12)≥14>0假设n=k(k∈N*)时命题成立,即f(12k)≥122k>0,则f(12k)=2f(12k+1)+2×12k+1×12k+1≥122k?f(12k+1)≥122(k+1),由上知,则f(12n)>0(n∈N*).6.巳知椭圆{xn}与{yn}的中心在坐标原点,长轴在x轴上,离心率为32,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为______.答案:由题设知e=32,2a=12,∴a=6,b=3,∴所求椭圆方程为x236+y29=1.:x236+y29=1.7.已知直线的斜率为3,则此直线的倾斜角为()A.30°B.60°C.45°D.120°答案:∵直线的斜率为3,∴直线倾斜角α满足tanα=3结合α∈[0°,180°),可得α=60°故选:B8.为了检测某种产品的直径(单位mm),抽取了一个容量为100的样本,其频率分布表(不完整)如下:

分组频数累计频数频率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)

(Ⅰ)完成频率分布表;

(Ⅱ)画出频率分布直方图;

(Ⅲ)据上述图表,估计产品直径落在[10.95,11.35)范围内的可能性是百分之几?答案:解(Ⅰ)分组频数累计频数频率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)72240.24[11.25,11.35)84120.12[11.35,11.45)9280.08[11.45,11.55)9860.06[11.55,11.65)10020.02(Ⅲ)0.15+0.18+0.24+0.12=0.69=69%,所以产品直径落在[10.95,11.35)范围内的可能性为69%.9.有一个正四棱台形状的油槽,可以装油190L,假如它的两底面边长分别等于60cm和40cm,求它的深度.答案:由于台体的体积V=13(S+SS′+S′)h,则h=3VS+SS′+S′=3×1900003600+2400+1600=75cm.故它的深度为75cm.10.在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于S4的概率是()A.13B.12C.34D.14答案:记事件A={△PBC的面积大于S4},基本事件空间是线段AB的长度,(如图)因为S△PBC>S4,则有12BC?PE>14×12BC?AD;化简记得到:PEAD>14,因为PE平行AD则由三角形的相似性PEAD>14;所以,事件A的几何度量为线段AP的长度,因为AP=34AB,所以△PBC的面积大于S4的概率=APAB=34.故选C.11.已知不等式(a2+a+2)2x>(a2+a+2)x+8,其中x∈N+,使此不等式成立的x的最小整数值是______.答案:∵a2+a+2=(a+12)2+74>1,且x∈N+,∴由正整数指数函数在底数大于1时单调递增的性质,得2x>x+8,即x>8,∴使此不等式成立的x的最小整数值为9.故为:9.12.在500个人身上试验某种血清预防感冒的作用,把一年中的记录与另外500个未用血清的人作比较,结果如下:

未感冒

感冒

合计

试验过

252

248

500

未用过

224

276

500

合计

476

524

1000

根据上表数据,算得Χ2=3.14.以下推断正确的是()

A.血清试验与否和预防感冒有关

B.血清试验与否和预防感冒无关

C.通过是否进行血清试验可以预测是否得感冒

D.通过是否得感冒可以推断是否进行了血清试验答案:A13.在空间直角坐标系0xyz中有两点A(2,5,1)和B(2,4,-1),则|AB|=______.答案:∵点A(2,5,1)和B(2,4,-1),∴AB=(0,-1,-2).∴|AB|=0+(-1)2+(-2)2=5.故为5.14.参数方程x=3cosθy=4sinθ,(θ为参数)化为普通方程是______.答案:由参数方程x=3cosθy=4sinθ,得cosθ=13xsinθ=14y∵cos2θ+sin2θ=1,∴(13x)2+(14y)2=1,化简得x29+y216=1,即为椭圆的普通方程故为:x29+y216=115.下列四个命题中,正确的有

①;

②;

③,使;

④,使为29的约数.答案:两解析::①∵(-3)2-4×2×40,∴①正确;②∵2×(-1)+1=-1x,∴③不正确;④x=1是29的约数,∴④正确;∴正确的有两个点评:本题考查全称命题、特称命题,容易题16.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是()A.59B.49C.1121D.1021答案:基本事件总数为C93,设抽取3个数,和为偶数为事件A,则A事件数包括两类:抽取3个数全为偶数,或抽取3数中2个奇数1个偶数,前者C43,后者C41C52.∴A中基本事件数为C43+C41C52.∴符合要求的概率为C34+C14C25C39=1121.17.在5件产品中,有3件一等品,2件二等品.从中任取2件.那么以710为概率的事件是()A.都不是一等品B.至少有一件二等品C.恰有一件一等品D.至少有一件一等品答案:5件产品中,有3件一等品和2件二等品,从中任取2件,从5件产品中任取2件,共有C52=10种结果,∵“任取的2件产品都不是一等品”只有1种情况,其概率是110;“任取的2件产品中至少有一件二等品”有C31C21+1种情况,其概率是710;“任取的2件产品中恰有一件一等品”有C31C21种情况,其概率是610;“任取的2件产品在至少有一件一等品”有C31C21+C32种情况,其概率是910;∴以710为概率的事件是“至少有一件二等品”.故为B.18.一射手对靶射击,直到第一次命中为止每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为()

A.2.44

B.3.376

C.2.376

D.2.4答案:C19.将命题“正数a的平方大于零”改写成“若p,则q”的形式,并写出它的逆命题、否命题与逆否命题.答案:原命题可以写成:若a是正数,则a的平方大于零;逆命题:若a的平方大于零,则a是正数;否命题:若a不是正数,则a的平方不大于零;逆否命题:若a的平方不大于零,则a不是正数.20.不等式的解集是

.答案:[0,2]解析:本小题主要考查根式不等式的解法,去掉根号是解根式不等式的基本思路,也考查了转化与化归的思想.原不等式等价于解得0≤x≤2.21.若,,,则

(

)

A.

B.

C.

D.答案:A22.若直线x=1的倾斜角为α,则α()A.等于0B.等于π4C.等于π2D.不存在答案:由题意知直线的斜率不存在,故倾斜角α=π2,故选C.23.如图,正六边形ABCDEF中,=()

A.

B.

C.

D.

答案:D24.以椭圆x23+y2=1的右焦点为焦点,且顶点在原点的抛物线标准方程为______.答案:∵椭圆x23+y2=1的右焦点F(2,0),∴以F(2,0)为焦点,顶点在原点的抛物线标准方程为y2=42x.故为:y2=42x.25.以抛物线y2=2px(p>0)的焦半径|PF|为直径的圆与y轴位置关系是______.答案:根据抛物线定义可知|PF|=p2,而圆的半径为p2,圆心为(p2,0),|PF|正好等于所求圆的半径,进而可推断圆与y轴位置关系是相切.26.不等式|x-500|≤5的解集是______.答案:因为不等式|x-500|≤5,由绝对值不等式的几何意义可知:{x|495≤x≤505}.故为:{x|495≤x≤505}.27.若向量且与的夹角余弦为则λ等于()

A.4

B.-4

C.

D.答案:C28.(1)若三条直线2x+3y+8=0,x-y-1=0和x+ky=0相交于一点,则k的值为?

(2)若α∈N,又三点A(α,0),B(0,α+4),C(1,3)共线,求α的值.答案:(1)由2x+3y+8=0x-y-1=0解得x=-1,y=-2,∴直线2x+3y+8=0和x-y-1=0的交点为(-1,-2).∵三条直线2x+3y+8=0,x-y-1=0和x+ky=0相交于一点,∴(-1,-2)在直线x+ky=0上,∴-1-2k=0,解得k=-12.(2)A、B、C三点共线,说明直线AB与直线AC的斜率相等∴a+4-00-a=3-01-a,解得:a=229.“a、b、c等比”是“b2=ac”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件答案:由“a,G,b成等比”可得ba=cb,故有“b2=ac”成立,故充分性成立.但由“b2=ac”,不能推出“a、b、c成等比数列”,如a=b=0,c=1时,尽管有“b2=ac”,但0,0,1不能构成等比数列,故必要性不成立.故“b2=ac成等比”是“b2=ac”的充分不必要条件,故选B.30.设O是正方形ABCD的中心,向量,,,是(

A.平行向量

B.有相同终点的向量

C.相等向量

D.模相等的向量答案:D31.已知空间三点的坐标为A(1,5,-2),B(2,4,1),C(p,3,q+2),若A,B,C三点共线,则p=______,q=______.答案:∵A(1,5,-2),B(2,4,1),C(p,3,q+2),∴AB=(1,-1,3),AC=(p-1,-2,q+4)∵A,B,C三点共线,∴AB=λAC∴(1,-1,3)=λ(p-1,-2,q+4),∴1=λ(p-1)-1=-2λ,3=λ(q+4),∴λ=12,p=3,q=2,故为:3;232.刻画数据的离散程度的度量,下列说法正确的是(

(1)应充分利用所得的数据,以便提供更确切的信息;

(2)可以用多个数值来刻画数据的离散程度;

(3)对于不同的数据集,其离散程度大时,该数值应越小.

A.(1)和(3)

B.(2)和(3)

C.(1)和(2)

D.都正确答案:C33.已知一次函数y=(2k-4)x-1在R上是减函数,则k的取值范围是()A.k>2B.k≥2C.k<2D.k≤2答案:因为函数y=(2k-4)x-1为R上是减函数⇔该一次函数的一次项的系数为负⇔2k-4<0⇒k<2.故为:C34.(文科做)

f(x)=1x

(x<0)(13)x(x≥0),则不等式f(x)≥13的解集是______.答案:x<0时,f(x)=1x≥13,解得x∈?;x≥0时,f(x)=(13)x≥13,解得x≤1,故0≤x≤1.综上所述,不等式f(x)≥13的解集为{x|0≤x≤1}.故为:{x|0≤x≤1}.35.若O(0,0),A(1,2)且OA′=2OA.则A′点坐标为()A.(1,4)B.(2,2)C.(2,4)D.(4,2)答案:设A′(x,y),OA′=(x,y),OA=(1,2),∴(x,y)=2(1,2),故选C.36.用0、1、2、3、4、5这6个数字,可以组成无重复数字的五位偶数的个数为______(用数字作答).答案:末尾是0时,有A55=120种;末尾不是0时,有2种选择,首位有4种选择,中间有A44,故有2×4×A44=192种故共有120+192=312种.故为:31237.某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本;已知从女学生中抽取的人数为80人,则n=______.答案:∵某校有老师200人,男学生1

200人,女学生1

000人.∴学校共有200+1200+1000人由题意知801000=n200+1200+1000,∴n=192.故为:19238.已知函数f(x)=2x,数列{an}满足a1=f(0),且f(an+1)=(n∈N*),

(1)证明数列{an}是等差数列,并求a2010的值;

(2)分别求出满足下列三个不等式:,

的k的取值范围,并求出同时满足三个不等式的k的最大值;

(3)若不等式对一切n∈N*都成立,猜想k的最大值,并予以证明。答案:解:(1)由,得,即,∴是等差数列,∴,∴。(2)由,得;,得;,得,,∴当k同时满足三个不等式时,。(3)由,得恒成立,令,则,,∴,∵F(n)是关于n的单调增函数,∴,∴。39.向量b与a=(2,-1,2)共线,且a•b=-18,则b的坐标为______.答案:因为向量b与a=(2,-1,2)共线,所以设b=ma,因为且a•b=-18,所以ma2=-18,因为|a|=22+1+22=3,所以m=-2.所以b=ma=-2(2,-1,2)=(-4,2,-4).故为:(-4,2,-4).40.曲线C:x=t-2y=1t+1(t为参数)的对称中心坐标是______.答案:曲线C:x=t-2y=1t+1(t为参数)即y-1=1x+2,其对称中心为(-2,1).故为:(-2,1).41.如图,在半径为7的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为______.答案:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP•1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半径为7,则圆心O到弦CD的距离为d=r2-(CD2)2=7-(52)2=32.故为:32.42.直线l1:x+ay=2a+2与直线l2:ax+y=a+1平行,则a=______.答案:直线l1:x+ay=2a+2即x+ay-2a-2=0;直线l2:ax+y=a+1即ax+y-a-1=0,∵直线l1与直线l2互相平行∴当a≠0且a≠-1时,1a=a1≠-2a-2-a-1,解之得a=1当a=0时,两条直线垂直;当a=-1时,两条直线重合故为:143.已知f(1,1)=1,f(m,n)∈N*(m、n∈N*),且对任意m、n∈N*都有:

①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1).给出以下四个结论:

(1)f(1,2)=3;

(2)f(1,5)=9;

(3)f(5,1)=16;

(4)f(5,6)=26.其中正确的为______.答案:∵f(1,1)=1,f(m,n+1)=f(m,n)+2;f(m+1,1)=2f(m,1)(1)f(1,2)=f(1,1)+2=3;故(1)正确(2)f(1,5)=f(1,4)+2=f(1,3)+4=f(1,2)+6=f(1,1)+8=9;故(2)正确(3)f(5,1)=2f(4,1)=4f(3,1)=8f(2,1)=16f(1,1)=16;故(3)正确(4)f(5,6)=f(5,5)+2=f(5,4)+4=f(5,3)+6=f(5,2)=8=f(5,1)+10=16+10=26;故(4)正确故为(1)(2)(3)(4)44.如图,⊙O是Rt△ABC的外接圆,点O在AB上,BD⊥AB,点B是垂足,OD∥AC,连接CD.

求证:CD是⊙O的切线.答案:证明:连接CO,(1分)∵OD∥AC,∴∠COD=∠ACO,∠CAO=∠DOB.(3分)∵∠ACO=∠CAO,∴∠COD=∠DOB.(6分)∵OD=OD,OC=OB,∴△COD≌△BOD.(8分)∴∠OCD=∠OBD=90°.∴OC⊥CD,即CD是⊙O的切线.(10分)45.函数y=(43)x,x∈N+是()A.增函数B.减函数C.奇函数D.偶函数答案:由正整数指数函数不具有奇偶性,可排除C、D;因为函数y=(43)x,x∈N+的底数43大于1,所以此函数是增函数.故选A.46.m为何值时,关于x的方程8x2-(m-1)x+(m-7)=0的两根,

(1)为正数;

(2)一根大于2,一根小于2.答案:(1)设方程两根为x1,x2,则∵方程的两根为正数,∴△≥0x1+x2>0x1x2>0即[-(m-1)]2-4×8×(m-7)>0--(m-1)8>0m-78>0解得7<m≤9或m≥25.(2)令f(x)=8x2-(m-1)x+(m-7),由题意得f(2)<0,解得m>27.47.已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是(

)。答案:40或60(不唯一)48.平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为为v2=(-2,-4,10),则平面α与平面β()A.平行B.垂直C.相交D.不确定答案:∵平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为v2=(-2,-4,10),∵v1•v2=1×(-2)+2×(-4)+1×10=0∴v1⊥v2,∴平面α⊥平面β故选B49.下列有关相关指数R2的说法正确的有()

A.R2的值越大,说明残差平方和越小

B.R2越接近1,表示回归效果越差

C.R2的值越小,说明残差平方和越小

D.如果某数据可能采取几种不同回归方程进行回归分析,一般选择R2小的模型作为这组数据的模型答案:A50.已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是32π3,则这个三棱柱的体积是______.答案:由43πR3=32π3,得R=2.∴正三棱柱的高h=4.设其底面边长为a,则13?32a=2.∴a=43.∴V=34(43)2?4=483.故为:483第3卷一.综合题(共50题)1.已知直线l的参数方程为x=-4+4ty=-1-2t(t为参数),圆C的极坐标方程为ρ=22cos(θ+π4),则圆心C到直线l的距离是______.答案:直线l的普通方程为x+2y+6=0,圆C的直角坐标方程为x2+y2-2x+2y=0.所以圆心C(1,-1)到直线l的距离d=|1-2+6|5=5.故为5.2.抛物线y2=4x的焦点坐标为()

A.(0,1)

B.(1,0)

C.(0,2)

D.(2,0)答案:B3.若直线y=x+b与圆x2+y2=2相切,则b的值为(

A.±4

B.±2

C.±

D.±2

答案:B4.执行下列程序后,输出的i的值是()

A.5

B.6

C.10

D.11答案:D5.将1,2,3,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法数为()

A.6种

B.12种

C.18种

D.24种

答案:A6.国旗上的正五角星的每一个顶角是多少度?答案:由图可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.7.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)

A.(不等式选做题)不等式|x-5|+|x+3|≥10的解集是______.

B.(坐标系与参数方程选做题)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是______.

C.(几何证明选做题)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=22,BE=1,BF=2,若CE与圆相切,则线段CE的长为______.答案:A.∵|x-5|+|x+3|≥10,∴当x≥5时,x-5+x+3≥10,∴x≥6;当x≤-3时,有5-x+(-x-3)≥10,∴x≤-4;当-4<x<5时,有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴该圆的圆心的直角坐标为(-1,0),∴其极坐标是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依题意,由相交线定理得:AF•FB=DF•FC,∴AF×2=22×22,∴AF=4;又∵CE与圆相切,∴|CE|2=|EB|•|EA|=1×(1+2+4)=7,∴|CE|=7.故为:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.8.下面程序运行后,输出的值是()

A.42

B.43

C.44

D.45

答案:C9.已知a=(1-t,1-t,t),b=(2,t,t),则|b-a|的最小值是______.答案:∵a=(1-t,1-t,t),b=(2,t,t),∴向量b-a=(1+t,2t-1,0)可得向量b-a的模|b-a|=(1+t)2+

(2t-1)2+02=5t2-2t+2∵5t2-2t+2=5(t-15)2+95∴当且仅当t=15时,5t2-2t+2的最小值为95所以当t=15时,|b-a|的最小值是95=355故为:35510.不等式lgxx<0的解集是______.答案:∵lgx的定义域为(0,+∞)∴x>0∵lgxx<0∴lgx<0=lg1即0<x<1∴不等式lgxx<0的解集是{x|0<x<1}故为:{x|0<x<1}11.已知随机变量ξ服从正态分布N(1,δ2)(δ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为(

A.

B.

C.

D.答案:D12.直线y=3x+3的倾斜角的大小为______.答案:∵直线y=3x+3的斜率等于3,设倾斜角等于α,则0°≤α<180°,且tanα=3,∴α=60°,故为60°.13.ab>0,则①|a+b|>|a|②|a+b|<|b|③|a+b|<|a-b|④|a+b|>|a-b|四个式中正确的是()

A.①②

B.②③

C.①④

D.②④答案:C14.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则Dξ=______;.答案:∵由题意知该病的发病率为0.02,且每次实验结果都是相互独立的,∴ξ~B(10,0.02),∴由二项分布的方差公式得到Dξ=10×0.02×0.98=0.196.故为:0.19615.某种产品的广告费支出x与销售额y(单位:万元)之间有如下一组数据:

x24568y3040605070若y与x之间的关系符合回归直线方程y=6.5x+a,则a的值是()A.17.5B.27.5C.17D.14答案:由表格得.x=5,.y=50.

∵y关于x的线性回归方程为y=6.5x+a,∴50=6.5×5+a,∴a=17.5.故选A.16.直线3x+4y-12=0和3x+4y+3=0间的距离是

______.答案:由两平行线间的距离公式得直线3x+4y-12=0和3x+4y+3=0间的距离是|-12-3|5=3,故为3.17.已知椭圆C1:x2a2+y2b2=1(a>b>0)的离心率为33,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切.

(1)求椭圆C1的方程;

(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于直线l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;

(3)设C2与x轴交于点Q,不同的两点R,S在C2上,且满足QR•RS=0,求|QS|的取值范围.答案:(1)由e=33得2a2=3b2,又由直线l:y=x+2与圆x2+y2=b2相切,得b=2,a=3,∴椭圆C1的方程为:x23+y22=1.(4分)(2)由MP=MF2得动点M的轨迹是以l1:x=-1为准线,F2为焦点的抛物线,∴点M的轨迹C2的方程为y2=4x.(8分)(3)Q(0,0),设R(y214,y1),S(y224,y2),∴QR=(y214,y1),RS=(y22-y214,y2-y1),由QR•RS=0,得y21(y22-y21)16+y1(y2-y1)=0,∵y1≠y2∴化简得y2=-y1-16y1,(10分)∴y22=y21+256y21+32≥2256+32=64(当且仅当y1=±4时等号成立),∵|QS|=(y224)2+y22=14(y22+8)2-64,又∵y22≥64,∴当y22=64,即y2=±8时|QS|min=85,∴|QS|的取值范围是[85,+∞).(13分)18.在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为(5,0),e1=(2,1)、e2=(2,-1)分别是两条渐近线的方向向量.任取双曲线Γ上的点P,若OP=ae1+be2(a、b∈R),则a、b满足的一个等式是______.答案:因为e1=(2,1)、e2=(2,-1)是渐进线方向向量,所以双曲线渐近线方程为y=±12x,又c=5,∴a=2,b=1双曲线方程为x24-y2=1,OP=ae1+be2=(2a+2b,a-b),∴(2a+2b)24-(a-b)2=1,化简得4ab=1.故为4ab=1.19.若向量且与的夹角余弦为则λ等于()

A.4

B.-4

C.

D.答案:C20.若|a|=3、|b|=4,且a⊥b,则|a+b|=______.答案:∵|a|=3,|b|=4,且a⊥b,∴|a+b|=a2+2a?b+b2=9+0+16=5.故为:5.21.设U={(x,y)|x2+y2≤1,x,y∈R},M={(x,y)|x|+|y|≤1,x,y∈R},现有一质点随机落入区域U中,则质点落入M中的概率是()A.2πB.12πC.1πD.2π答案:满足条件U={(x,y)|x2+y2≤1,x,y∈R}的圆,如下图示:其中满足条件M={(x,y)|x|+|y|≤1,x,y∈R}的平面区域如图中阴影所示:则圆的面积S圆=π阴影部分的面积S阴影=2故质点落入M中的概率概率P=S阴影S正方形=2π故选D22.已知G是△ABC的重心,O是平面ABC外的一点,若λOG=OA+OB+OC,则λ=______.答案:如图,正方体中,OA+OB+OC=OD=3OG,∴λ=3.故为3.23.i是虚数单位,若(3+5i)x+(2-i)y=17-2i,则x、y的值分别为()

A.7,1

B.1,7

C.1,-7

D.-1,7答案:B24.Direchlet函数定义为:D(t)=1,t∈Q0,t∈CRQ,关于函数D(t)的性质叙述不正确的是()A.D(t)的值域为{0,1}B.D(t)为偶函数C.D(t)不是周期函数D.D(t)不是单调函数答案:函数D(t)是分段函数,值域是两段的并集,所以值域为{0,1};有理数和无理数正负关于原点对称,所以函数D(t)的图象关于y轴对称,所以函数是偶函数;对于不同的有理数x对应的函数值相等,所以函数不是单调函数;因为任取一个非0有理数,都有有理数加有理数为有理数,有理数加无理数为无理数,所以函数D(t)的图象周期出现,所以函数是周期函数,所以选项C不正确.故选C.25.把平面上一切单位向量归结到共同的起点,那么这些向量的终点所构成的图形是

______.答案:把平面上一切单位向量归结到共同的起点,那么这些向量的终点到起点的距离都等于1,所以,由圆的定义得,这些向量的终点所构成的图形是半径为1的圆.26.已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是()

A.2-1

B.2-2

C.-1

D.-2答案:C27.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为4的等腰三角形,左视图是一个底边长为6、高为4的等腰三角形.则该几何体的体积为______.答案:由题意几何体复原是一个底面边长为8,6的距离,高为4,且顶点在底面的射影是底面矩形的中心的四棱锥.底面矩形的面积是48所以几何体的体积是:13×46×4=64故为:64.28.如图把椭圆x225+y216=1的长轴AB分成8分,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,…P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+…+|P7F|=______.答案:如图,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则根据椭圆的对称性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余两对的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故为35.29.直线2x+y-3=0与直线3x+9y+1=0的夹角是()

A.

B.arctan2

C.

D.答案:C30.下列各量:①密度

②浮力

③风速

④温度,其中是向量的个数有()个.A.1B.3C.2D.4答案:根据向量的定义,知道需要同时具有大小和方向两个要素才是向量,在所给的四个量中,密度只有大小,浮力既有大小又有方向,风速既有大小又有方向,温度只有大小没有方向综上可知向量的个数是2个,故选C.31.设i为虚数单位,若=b+i(a,b∈R),则a,b的值为()

A.a=0,b=1

B.a=1,b=0

C.a=1,b=1

D.a=,b=-1答案:B32.已知向量i=(1,0),j=(0,1).若向量i+λj与λi+j垂直,则实数λ=______.答案:由题意可得,i+λj=(1,λ),λi+j=(λ,1)∵i+λj与λi+j垂直(i+λj)?(λi+j)=2λ=0∴λ=0故为:033.在区间[0,1]产生的随机数x1,转化为[-1,3]上的均匀随机数x,实施的变换为(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论